Research Output per year

## Fingerprint Dive into the research topics where Kenneth D T Mclaughlin is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

- 1 Similar Profiles

Orthogonal Polynomials
Mathematics

Exponential Weights
Mathematics

Riemann-Hilbert Problem
Mathematics

Steepest Descent Method
Mathematics

Random Matrices
Mathematics

Argand diagram
Mathematics

Hilbert
Mathematics

Equilibrium Measure
Mathematics

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Research Output 1996 2019

2
Citations
(Scopus)

## A Study of the Direct Spectral Transform for the Defocusing Davey-Stewartson II Equation the Semiclassical Limit

Assainova, O., Klein, C., Mclaughlin, K. D. T. & Miller, P. D., Jan 1 2019, In : Communications on Pure and Applied Mathematics.Research output: Contribution to journal › Article

Semiclassical Limit

Mathematical transformations

Transform

Singularly Perturbed

Paul Adrien Maurice Dirac

1
Citation
(Scopus)

## Spectral approach to the scattering map for the semi-classical defocusing Davey–Stewartson II equation

Klein, C., Mclaughlin, K. D. T. & Stoilov, N., Jan 1 2019, In : Physica D: Nonlinear Phenomena. 132126.Research output: Contribution to journal › Article

defocusing

Scattering

Fixed Point Iteration

GMRES

Discrete Fourier transform

4
Citations
(Scopus)

## Long time asymptotic behavior of the focusing nonlinear Schrödinger equation

Borghese, M., Jenkins, R. & Mclaughlin, K. D. T., Jan 1 2017, (Accepted/In press) In : Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire.Research output: Contribution to journal › Article

Long-time Asymptotics

Long-time Behavior

Solitons

Nonlinear equations

Nonlinear Equations

3
Citations
(Scopus)

## Spectral Approach to D-bar Problems

Klein, C. & Mclaughlin, K. D. T., Jun 1 2017, In : Communications on Pure and Applied Mathematics. 70, 6, p. 1052-1083 32 p.Research output: Contribution to journal › Article

Integral equations

Integral Equations

Krylov Methods

Spectral Problem

Integrand

4
Citations
(Scopus)

## Asymptotics for the Partition Function in Two-Cut Random Matrix Models

Claeys, T., Grava, T. & Mclaughlin, K. D. T., Oct 25 2015, In : Communications in Mathematical Physics. 339, 2, p. 513-587 75 p.Research output: Contribution to journal › Article

Matrix Models

Random Matrices

Partition Function

partitions

Asymptotic Expansion