Fingerprint Fingerprint is based on mining the text of the persons scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 3 Similar Profiles
Asteroids Engineering & Materials Science
asteroids Physics & Astronomy
Landing Engineering & Materials Science
sliding Physics & Astronomy
Spacecraft Engineering & Materials Science
asteroid Earth & Environmental Sciences
mars Physics & Astronomy
Mars Earth & Environmental Sciences

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2004 2018

  • 547 Citations
  • 13 h-Index
  • 80 Conference contribution
  • 42 Article
  • 4 Chapter

Application of ZEM/ZEV guidance for closed-loop transfer in the earth-moon system

Drozd, K., Furfaro, R. & Toputo, F. Jan 1 2018 Space Flight Mechanics Meeting. 210009 ed. American Institute of Aeronautics and Astronautics Inc, AIAA

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Moon
Earth (planet)
Feedback
Trajectories

Reactivity determination using the hybrid transport point kinetics and the area method

Picca, P. & Furfaro, R. Apr 1 2018 In : Annals of Nuclear Energy. 114, p. 191-197 7 p.

Research output: Contribution to journalArticle

Kinetics
Neutrons
Mathematical models

Surface Composition of (99942) Apophis

Reddy, V., Sanchez, J. A., Furfaro, R., Binzel, R. P., Burbine, T. H., Le Corre, L., Hardersen, P. S., Bottke, W. F. & Brozovic, M. Mar 1 2018 In : Astronomical Journal. 155, 3, 140

Research output: Contribution to journalArticle

observational method
asteroids
encounters
asteroid
terrestrial planets

A deep learning approach for optical autonomous planetary relative terrain navigation

Campbell, T., Furfaro, R., Linares, R. & Gaylor, D. 2017 Spaceflight Mechanics 2017. Univelt Inc., Vol. 160, p. 3293-3302 10 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

navigation
learning
Navigation
Neural networks
autonomous navigation
1 Citations

Application of Extreme Learning Machines to inverse neutron kinetics

Picca, P. & Furfaro, R. Feb 1 2017 In : Annals of Nuclear Energy. 100, p. 1-8 8 p.

Research output: Contribution to journalArticle

Learning systems
Neutrons
Kinetics
Neural networks
Particle accelerators