11-Deoxy,16,16-dimethyl prostaglandin E2 induces specific proteins in association with its ability to protect against oxidative stress

Kelly M. Towndrow, Zhe Jia, Herng Hsiang Lo, Maria D. Person, Terrence Monks, Serrine Lau

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Prostaglandins (PGs) act locally to maintain cellular homeostasis and stimulate stress response signaling pathways. These cellular effects are diverse and are tissue-dependent. PGE2, and the synthetic analogue, 11-deoxy,16,16-dimethyl PGE2 (DDM-PGE2), protect renal proximal tubular epithelial (LLC-PK1) cells against cellular injury induced by the potent nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, 2,3,5-tris-(glutathion-S-yl)hydroquinone. Although this cytoprotective response (in LLC-PK1 cells) is mediated through a thromboxane or thromboxane-like receptor coupled to AP-1 signaling pathways, the mechanism of cytoprotection is unknown. In this study, we utilized HPLC-electrospray ionization tandem mass spectrometric (ESI MS/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometric (MALDI TOF) analysis of proteins isolated from DDM-PGE2-stimulated LLC-PK1 cells to identify candidate cytoprotective proteins. DDM-PGE2 selectively stimulated the synthesis of several proteins in LLC-PK1 cells. Peptide sequencing by ESI-MS/MS of in-gel tryptic protein digests revealed the identity of eight proteins: endothelial actin binding protein, myosin, elongation factor 2 (EF-2), elongation factor 1α-1 (EF-1α), heat shock protein 90β (HSP90β), glucose-regulated protein 78 (GRP 78), membrane-organizing extension spike protein, and actin. Both ESI-MS/MS and MALDI-MS analysis resulted in the same protein identification. Western analysis confirmed the temporal induction of the majority of these proteins, including EF-2, EF-1α, HSP90β, GRP78, and actin. The collective expression of these proteins suggests that DDM-PGE2-mediated cytoprotection may involve alterations in cytoskeletal organization and/or stimulation of an endoplasmic reticulum (ER) stress response. The present studies provide insights into potential downstream targets of PG signaling.

Original languageEnglish (US)
Pages (from-to)312-319
Number of pages8
JournalChemical Research in Toxicology
Volume16
Issue number3
DOIs
StatePublished - Mar 1 2003
Externally publishedYes

Fingerprint

Oxidative stress
Dinoprostone
Oxidative Stress
Association reactions
LLC-PK1 Cells
16,16-Dimethylprostaglandin E2
Proteins
Peptide Elongation Factor 2
Peptide Elongation Factor 1
HSP90 Heat-Shock Proteins
Cytoprotection
Thromboxanes
Prostaglandins
Actins
Thromboxane Receptors
Microfilament Proteins
Electrospray ionization
Endoplasmic Reticulum Stress
Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry
Transcription Factor AP-1

ASJC Scopus subject areas

  • Drug Discovery
  • Organic Chemistry
  • Chemistry(all)
  • Toxicology
  • Health, Toxicology and Mutagenesis

Cite this

11-Deoxy,16,16-dimethyl prostaglandin E2 induces specific proteins in association with its ability to protect against oxidative stress. / Towndrow, Kelly M.; Jia, Zhe; Lo, Herng Hsiang; Person, Maria D.; Monks, Terrence; Lau, Serrine.

In: Chemical Research in Toxicology, Vol. 16, No. 3, 01.03.2003, p. 312-319.

Research output: Contribution to journalArticle

@article{00cf370e4b054a88960fe3685493ef77,
title = "11-Deoxy,16,16-dimethyl prostaglandin E2 induces specific proteins in association with its ability to protect against oxidative stress",
abstract = "Prostaglandins (PGs) act locally to maintain cellular homeostasis and stimulate stress response signaling pathways. These cellular effects are diverse and are tissue-dependent. PGE2, and the synthetic analogue, 11-deoxy,16,16-dimethyl PGE2 (DDM-PGE2), protect renal proximal tubular epithelial (LLC-PK1) cells against cellular injury induced by the potent nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, 2,3,5-tris-(glutathion-S-yl)hydroquinone. Although this cytoprotective response (in LLC-PK1 cells) is mediated through a thromboxane or thromboxane-like receptor coupled to AP-1 signaling pathways, the mechanism of cytoprotection is unknown. In this study, we utilized HPLC-electrospray ionization tandem mass spectrometric (ESI MS/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometric (MALDI TOF) analysis of proteins isolated from DDM-PGE2-stimulated LLC-PK1 cells to identify candidate cytoprotective proteins. DDM-PGE2 selectively stimulated the synthesis of several proteins in LLC-PK1 cells. Peptide sequencing by ESI-MS/MS of in-gel tryptic protein digests revealed the identity of eight proteins: endothelial actin binding protein, myosin, elongation factor 2 (EF-2), elongation factor 1α-1 (EF-1α), heat shock protein 90β (HSP90β), glucose-regulated protein 78 (GRP 78), membrane-organizing extension spike protein, and actin. Both ESI-MS/MS and MALDI-MS analysis resulted in the same protein identification. Western analysis confirmed the temporal induction of the majority of these proteins, including EF-2, EF-1α, HSP90β, GRP78, and actin. The collective expression of these proteins suggests that DDM-PGE2-mediated cytoprotection may involve alterations in cytoskeletal organization and/or stimulation of an endoplasmic reticulum (ER) stress response. The present studies provide insights into potential downstream targets of PG signaling.",
author = "Towndrow, {Kelly M.} and Zhe Jia and Lo, {Herng Hsiang} and Person, {Maria D.} and Terrence Monks and Serrine Lau",
year = "2003",
month = "3",
day = "1",
doi = "10.1021/tx020048l",
language = "English (US)",
volume = "16",
pages = "312--319",
journal = "Chemical Research in Toxicology",
issn = "0893-228X",
publisher = "American Chemical Society",
number = "3",

}

TY - JOUR

T1 - 11-Deoxy,16,16-dimethyl prostaglandin E2 induces specific proteins in association with its ability to protect against oxidative stress

AU - Towndrow, Kelly M.

AU - Jia, Zhe

AU - Lo, Herng Hsiang

AU - Person, Maria D.

AU - Monks, Terrence

AU - Lau, Serrine

PY - 2003/3/1

Y1 - 2003/3/1

N2 - Prostaglandins (PGs) act locally to maintain cellular homeostasis and stimulate stress response signaling pathways. These cellular effects are diverse and are tissue-dependent. PGE2, and the synthetic analogue, 11-deoxy,16,16-dimethyl PGE2 (DDM-PGE2), protect renal proximal tubular epithelial (LLC-PK1) cells against cellular injury induced by the potent nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, 2,3,5-tris-(glutathion-S-yl)hydroquinone. Although this cytoprotective response (in LLC-PK1 cells) is mediated through a thromboxane or thromboxane-like receptor coupled to AP-1 signaling pathways, the mechanism of cytoprotection is unknown. In this study, we utilized HPLC-electrospray ionization tandem mass spectrometric (ESI MS/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometric (MALDI TOF) analysis of proteins isolated from DDM-PGE2-stimulated LLC-PK1 cells to identify candidate cytoprotective proteins. DDM-PGE2 selectively stimulated the synthesis of several proteins in LLC-PK1 cells. Peptide sequencing by ESI-MS/MS of in-gel tryptic protein digests revealed the identity of eight proteins: endothelial actin binding protein, myosin, elongation factor 2 (EF-2), elongation factor 1α-1 (EF-1α), heat shock protein 90β (HSP90β), glucose-regulated protein 78 (GRP 78), membrane-organizing extension spike protein, and actin. Both ESI-MS/MS and MALDI-MS analysis resulted in the same protein identification. Western analysis confirmed the temporal induction of the majority of these proteins, including EF-2, EF-1α, HSP90β, GRP78, and actin. The collective expression of these proteins suggests that DDM-PGE2-mediated cytoprotection may involve alterations in cytoskeletal organization and/or stimulation of an endoplasmic reticulum (ER) stress response. The present studies provide insights into potential downstream targets of PG signaling.

AB - Prostaglandins (PGs) act locally to maintain cellular homeostasis and stimulate stress response signaling pathways. These cellular effects are diverse and are tissue-dependent. PGE2, and the synthetic analogue, 11-deoxy,16,16-dimethyl PGE2 (DDM-PGE2), protect renal proximal tubular epithelial (LLC-PK1) cells against cellular injury induced by the potent nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, 2,3,5-tris-(glutathion-S-yl)hydroquinone. Although this cytoprotective response (in LLC-PK1 cells) is mediated through a thromboxane or thromboxane-like receptor coupled to AP-1 signaling pathways, the mechanism of cytoprotection is unknown. In this study, we utilized HPLC-electrospray ionization tandem mass spectrometric (ESI MS/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometric (MALDI TOF) analysis of proteins isolated from DDM-PGE2-stimulated LLC-PK1 cells to identify candidate cytoprotective proteins. DDM-PGE2 selectively stimulated the synthesis of several proteins in LLC-PK1 cells. Peptide sequencing by ESI-MS/MS of in-gel tryptic protein digests revealed the identity of eight proteins: endothelial actin binding protein, myosin, elongation factor 2 (EF-2), elongation factor 1α-1 (EF-1α), heat shock protein 90β (HSP90β), glucose-regulated protein 78 (GRP 78), membrane-organizing extension spike protein, and actin. Both ESI-MS/MS and MALDI-MS analysis resulted in the same protein identification. Western analysis confirmed the temporal induction of the majority of these proteins, including EF-2, EF-1α, HSP90β, GRP78, and actin. The collective expression of these proteins suggests that DDM-PGE2-mediated cytoprotection may involve alterations in cytoskeletal organization and/or stimulation of an endoplasmic reticulum (ER) stress response. The present studies provide insights into potential downstream targets of PG signaling.

UR - http://www.scopus.com/inward/record.url?scp=0037348603&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037348603&partnerID=8YFLogxK

U2 - 10.1021/tx020048l

DO - 10.1021/tx020048l

M3 - Article

C2 - 12641431

AN - SCOPUS:0037348603

VL - 16

SP - 312

EP - 319

JO - Chemical Research in Toxicology

JF - Chemical Research in Toxicology

SN - 0893-228X

IS - 3

ER -