2,2',3,3',6,6'-Hexachlorobiphenyl hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11

Stephen C. Waller, You Ai He, Greg R. Harlow, You Qun He, Eugene A Mash, James R. Halpert

Research output: Contribution to journalArticle

51 Scopus citations

Abstract

The structural basis of species differences in cytochrome P450 2B- mediated hydroxylation of 2,2',3,3',6,6'-hexachlorobiphenyl (236HCB) was evaluated by using 14 site-directed mutants of cytochrome P450 2B1 and three point mutants of 2B11 expressed in Escherichia coli. To facilitate metabolite identification, seven possible products, including three hydroxylated and four dihydroxylated hexachlorobiphenyls, were synthesized by direct functionalization of precursors and Ullmann and crossed Ullmann reactions. HPLC and GCfMS analysis and comparison with authentic standards revealed that 2B1, 2B11, and all their mutants produced 4,5-dihydroxy-236HCB and 5-hydroxy- 236HCB, while 2B11 L363V and 2B1 I114V mutants also catalyzed hydroxylation at the 4-position. The amount of products formed by 2B1 mutants I114V, F206L, L209A, T302S, V363A, V363L, V367A, I477A, I477L, G478S, I480A, and I480L was smaller than that of the wild type. I477V exhibited unaltered 236HCB metabolism, and I480V produced twice as much dihydroxy product as the wild type. For 2B11, substitution of Val-114 or Asp-290 with Ile decreased the product yields. Replacement of Leu-363 with Val dramatically altered the profile of 236HCB metabolites. In addition to an increase in the overall level of hydroxylation, the mutant mainly catalyzed hydroxylation at the 4- position. Incubation of P450 2B1 with 5-hydroxy-236HCB produced 4,5- dihydroxy-236HCB, which indicates that 4,5-dihydroxy-236HCB may be formed by a direct hydroxylation of 5-hydroxy-236HCB. The findings from this study demonstrate the importance of residues 114, 206, 209, 302, 363, 367, 477, 478, and 480 in 2B1 and 114, 290, and 363 in 2B11 for 236HCB metabolism.

Original languageEnglish (US)
Pages (from-to)690-699
Number of pages10
JournalChemical Research in Toxicology
Volume12
Issue number8
DOIs
Publication statusPublished - 1999

    Fingerprint

ASJC Scopus subject areas

  • Drug Discovery
  • Organic Chemistry
  • Chemistry(all)
  • Toxicology
  • Health, Toxicology and Mutagenesis

Cite this