A comparative study of resonant effects in two-dimensional active coated nano-particles of circular, polygonal, and elliptical shapes

Mikkel B. Jorgensen, Piotr M. Kaminski, Richard W Ziolkowski, Samel Arslanagic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The area of passive and active nano-antennas has recently attracted great attention due to their potentials in a large variety of applications. Numerous designs were proposed; both the traditional ones, inspired by their microwave counterparts, as well as those making extensive use of metamaterial and plasmonic structures. In regards to the latter, extensive analytical and numerical investigations were conducted on the theoretical designs of nano-antennas by use of passive and active coated nano-particles (CNPs) of various shapes and excitations. It was demonstrated that specifically designed active CNPs possess highly resonant properties making them useful candidates for a variety of nano-antenna designs.

Original languageEnglish (US)
Title of host publication2015 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2015 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages346
Number of pages1
ISBN (Print)9781479978175
DOIs
StatePublished - Oct 21 2015
EventUSNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2015 - Vancouver, Canada
Duration: Jul 19 2015Jul 24 2015

Other

OtherUSNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2015
Country/TerritoryCanada
CityVancouver
Period7/19/157/24/15

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Communication

Fingerprint

Dive into the research topics of 'A comparative study of resonant effects in two-dimensional active coated nano-particles of circular, polygonal, and elliptical shapes'. Together they form a unique fingerprint.

Cite this