A comparison of the Rh= ct and Λ CDM cosmologies based on the observed halo mass function

Manoj K. Yennapureddy, Fulvio Melia

Research output: Contribution to journalArticle

Abstract

The growth of structure may be traced via the redshift-dependent halo mass function. This quantity probes the re-ionization history and quasar abundance in the Universe, constituting an important probe of the cosmological predictions. Halos are not directly observable, however, so their mass and evolution must be inferred indirectly. The most common approach is to presume a relationship with galaxies and halos. Studies based on the assumption of a constant halo to stellar mass ratio Mh/ M (extrapolated from z≲ 4) reveal significant tension with ΛCDM – a failure known as “The Impossibly Early Galaxy Problem”. But whether this ratio evolves or remains constant through redshift 4 ≲ z≲ 10 is still being debated. To eliminate the tension with ΛCDM, it would have to change by about 0.8 dex over this range, an issue that may be settled by upcoming observations with the James Webb Space Telescope. In this paper, we explore the possibility that this major inconsistency may instead be an indication that the cosmological model is not completely correct. We study this problem in the context of another Friedmann–Lemaître–Robertson–Walker (FLRW) model known as the Rh= ct universe, and use our previous measurement of σ8 from the cosmological growth rate, together with new solutions to the Einstein–Boltzmann equations, to interpret these recent halo measurements. We demonstrate that the predicted mass and redshift dependence of the halo distribution in Rh= ct is consistent with the data, even assuming a constant Mh/ M throughout the observed redshift range (4 ≲ z≲ 10), contrasting sharply with the tension in ΛCDM. We conclude that – if Mh/ M turns out to be constant – the massive galaxies and their halos must have formed earlier than is possible in ΛCDM.

Original languageEnglish (US)
Article number571
JournalEuropean Physical Journal C
Volume79
Issue number7
DOIs
StatePublished - Jul 1 2019

Fingerprint

Galaxies
halos
Space telescopes
Ionization
galaxies
universe
James Webb Space Telescope
probes
stellar mass
mass ratios
quasars
indication
histories
ionization
predictions

ASJC Scopus subject areas

  • Engineering (miscellaneous)
  • Physics and Astronomy (miscellaneous)

Cite this

A comparison of the Rh= ct and Λ CDM cosmologies based on the observed halo mass function. / Yennapureddy, Manoj K.; Melia, Fulvio.

In: European Physical Journal C, Vol. 79, No. 7, 571, 01.07.2019.

Research output: Contribution to journalArticle

@article{896bf838afb142e58843905d1e57f359,
title = "A comparison of the Rh= ct and Λ CDM cosmologies based on the observed halo mass function",
abstract = "The growth of structure may be traced via the redshift-dependent halo mass function. This quantity probes the re-ionization history and quasar abundance in the Universe, constituting an important probe of the cosmological predictions. Halos are not directly observable, however, so their mass and evolution must be inferred indirectly. The most common approach is to presume a relationship with galaxies and halos. Studies based on the assumption of a constant halo to stellar mass ratio Mh/ M∗ (extrapolated from z≲ 4) reveal significant tension with ΛCDM – a failure known as “The Impossibly Early Galaxy Problem”. But whether this ratio evolves or remains constant through redshift 4 ≲ z≲ 10 is still being debated. To eliminate the tension with ΛCDM, it would have to change by about 0.8 dex over this range, an issue that may be settled by upcoming observations with the James Webb Space Telescope. In this paper, we explore the possibility that this major inconsistency may instead be an indication that the cosmological model is not completely correct. We study this problem in the context of another Friedmann–Lema{\^i}tre–Robertson–Walker (FLRW) model known as the Rh= ct universe, and use our previous measurement of σ8 from the cosmological growth rate, together with new solutions to the Einstein–Boltzmann equations, to interpret these recent halo measurements. We demonstrate that the predicted mass and redshift dependence of the halo distribution in Rh= ct is consistent with the data, even assuming a constant Mh/ M∗ throughout the observed redshift range (4 ≲ z≲ 10), contrasting sharply with the tension in ΛCDM. We conclude that – if Mh/ M∗ turns out to be constant – the massive galaxies and their halos must have formed earlier than is possible in ΛCDM.",
author = "Yennapureddy, {Manoj K.} and Fulvio Melia",
year = "2019",
month = "7",
day = "1",
doi = "10.1140/epjc/s10052-019-7082-z",
language = "English (US)",
volume = "79",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer New York",
number = "7",

}

TY - JOUR

T1 - A comparison of the Rh= ct and Λ CDM cosmologies based on the observed halo mass function

AU - Yennapureddy, Manoj K.

AU - Melia, Fulvio

PY - 2019/7/1

Y1 - 2019/7/1

N2 - The growth of structure may be traced via the redshift-dependent halo mass function. This quantity probes the re-ionization history and quasar abundance in the Universe, constituting an important probe of the cosmological predictions. Halos are not directly observable, however, so their mass and evolution must be inferred indirectly. The most common approach is to presume a relationship with galaxies and halos. Studies based on the assumption of a constant halo to stellar mass ratio Mh/ M∗ (extrapolated from z≲ 4) reveal significant tension with ΛCDM – a failure known as “The Impossibly Early Galaxy Problem”. But whether this ratio evolves or remains constant through redshift 4 ≲ z≲ 10 is still being debated. To eliminate the tension with ΛCDM, it would have to change by about 0.8 dex over this range, an issue that may be settled by upcoming observations with the James Webb Space Telescope. In this paper, we explore the possibility that this major inconsistency may instead be an indication that the cosmological model is not completely correct. We study this problem in the context of another Friedmann–Lemaître–Robertson–Walker (FLRW) model known as the Rh= ct universe, and use our previous measurement of σ8 from the cosmological growth rate, together with new solutions to the Einstein–Boltzmann equations, to interpret these recent halo measurements. We demonstrate that the predicted mass and redshift dependence of the halo distribution in Rh= ct is consistent with the data, even assuming a constant Mh/ M∗ throughout the observed redshift range (4 ≲ z≲ 10), contrasting sharply with the tension in ΛCDM. We conclude that – if Mh/ M∗ turns out to be constant – the massive galaxies and their halos must have formed earlier than is possible in ΛCDM.

AB - The growth of structure may be traced via the redshift-dependent halo mass function. This quantity probes the re-ionization history and quasar abundance in the Universe, constituting an important probe of the cosmological predictions. Halos are not directly observable, however, so their mass and evolution must be inferred indirectly. The most common approach is to presume a relationship with galaxies and halos. Studies based on the assumption of a constant halo to stellar mass ratio Mh/ M∗ (extrapolated from z≲ 4) reveal significant tension with ΛCDM – a failure known as “The Impossibly Early Galaxy Problem”. But whether this ratio evolves or remains constant through redshift 4 ≲ z≲ 10 is still being debated. To eliminate the tension with ΛCDM, it would have to change by about 0.8 dex over this range, an issue that may be settled by upcoming observations with the James Webb Space Telescope. In this paper, we explore the possibility that this major inconsistency may instead be an indication that the cosmological model is not completely correct. We study this problem in the context of another Friedmann–Lemaître–Robertson–Walker (FLRW) model known as the Rh= ct universe, and use our previous measurement of σ8 from the cosmological growth rate, together with new solutions to the Einstein–Boltzmann equations, to interpret these recent halo measurements. We demonstrate that the predicted mass and redshift dependence of the halo distribution in Rh= ct is consistent with the data, even assuming a constant Mh/ M∗ throughout the observed redshift range (4 ≲ z≲ 10), contrasting sharply with the tension in ΛCDM. We conclude that – if Mh/ M∗ turns out to be constant – the massive galaxies and their halos must have formed earlier than is possible in ΛCDM.

UR - http://www.scopus.com/inward/record.url?scp=85068747940&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068747940&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-019-7082-z

DO - 10.1140/epjc/s10052-019-7082-z

M3 - Article

VL - 79

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 7

M1 - 571

ER -