A genomics approach towards salt stress tolerance

H. J. Bohnert, P. Ayoubi, C. Borchert, R. A. Bressan, R. L. Burnap, J. C. Cushman, M. A. Cushman, M. Deyholos, R. Fischer, D. W. Galbraith, P. M. Hasegawa, M. Jenks, S. Kawasaki, H. Koiwa, S. Kore-eda, B. H. Lee, C. B. Michalowski, E. Misawa, M. Nomura, N. OzturkB. Postier, R. Prade, C. P. Song, Y. Tanaka, H. Wang, J. K. Zhu

Research output: Contribution to journalArticle

151 Citations (Scopus)

Abstract

Abiotic stresses reduce plant productivity. We focus on gene expression analysis following exposure of plants to high salinity, using salt-shock experiments to mimic stresses that affect hydration and ion homeostasis. The approach includes parallel molecular and genetic experimentation. Comparative analysis is employed to identify functional isoforms and genetic orthologs of stress-regulated genes common to cyanobacteria, fungi, algae and higher plants. We analyze global gene expression profiles monitored under salt stress conditions through abundance profiles in several species: in the cyanobacterium Synechocystis PCC6803, in unicellular (Saccharomyces cerevisiae) and multicellular (Aspergillus nidulans) fungi, the eukaryotic alga Dunaliella salina, the halophytic land plant Mesembryanthemum crystallinum, the glycophytic Oryza sativa and the genetic model Arabidopsis thaliana. Expanding the gene count, stress brings about a significant increase of transcripts for which no function is known. Also, we generate insertional mutants that affect stress tolerance in several organisms. More than 400 000 T-DNA tagged lines of A. thaliana have been generated, and lines with altered salt stress responses have been obtained. Integration of these approaches defines stress phenotypes, catalogs of transcripts and a global representation of gene expression induced by salt stress. Determining evolutionary relationships among these genes, mutants and transcription profiles will provide categories and gene clusters, which reveal ubiquitous cellular aspects of salinity tolerance and unique solutions in multicellular species.

Original languageEnglish (US)
Pages (from-to)295-311
Number of pages17
JournalPlant Physiology and Biochemistry
Volume39
Issue number3-4
DOIs
StatePublished - 2001

Fingerprint

Salt-Tolerance
algae
Genomics
stress tolerance
salt stress
Salts
genomics
gene expression
Cyanobacteria
Salinity
Arabidopsis thaliana
Arabidopsis
Mesembryanthemum crystallinum
salinity
Dunaliella salina
Mesembryanthemum
mutants
Synechocystis
Aspergillus nidulans
exposure assessment

Keywords

  • Arabidopsis T-DNA tag
  • EST sequencing
  • Functional genomics
  • Gene expression profiles
  • Microarray analysis
  • Phylogenetic profiles of stress tolerance
  • Salinity stress
  • Stress tolerance

ASJC Scopus subject areas

  • Plant Science
  • Biochemistry
  • Biotechnology

Cite this

Bohnert, H. J., Ayoubi, P., Borchert, C., Bressan, R. A., Burnap, R. L., Cushman, J. C., ... Zhu, J. K. (2001). A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry, 39(3-4), 295-311. https://doi.org/10.1016/S0981-9428(00)01237-7

A genomics approach towards salt stress tolerance. / Bohnert, H. J.; Ayoubi, P.; Borchert, C.; Bressan, R. A.; Burnap, R. L.; Cushman, J. C.; Cushman, M. A.; Deyholos, M.; Fischer, R.; Galbraith, D. W.; Hasegawa, P. M.; Jenks, M.; Kawasaki, S.; Koiwa, H.; Kore-eda, S.; Lee, B. H.; Michalowski, C. B.; Misawa, E.; Nomura, M.; Ozturk, N.; Postier, B.; Prade, R.; Song, C. P.; Tanaka, Y.; Wang, H.; Zhu, J. K.

In: Plant Physiology and Biochemistry, Vol. 39, No. 3-4, 2001, p. 295-311.

Research output: Contribution to journalArticle

Bohnert, HJ, Ayoubi, P, Borchert, C, Bressan, RA, Burnap, RL, Cushman, JC, Cushman, MA, Deyholos, M, Fischer, R, Galbraith, DW, Hasegawa, PM, Jenks, M, Kawasaki, S, Koiwa, H, Kore-eda, S, Lee, BH, Michalowski, CB, Misawa, E, Nomura, M, Ozturk, N, Postier, B, Prade, R, Song, CP, Tanaka, Y, Wang, H & Zhu, JK 2001, 'A genomics approach towards salt stress tolerance', Plant Physiology and Biochemistry, vol. 39, no. 3-4, pp. 295-311. https://doi.org/10.1016/S0981-9428(00)01237-7
Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC et al. A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry. 2001;39(3-4):295-311. https://doi.org/10.1016/S0981-9428(00)01237-7
Bohnert, H. J. ; Ayoubi, P. ; Borchert, C. ; Bressan, R. A. ; Burnap, R. L. ; Cushman, J. C. ; Cushman, M. A. ; Deyholos, M. ; Fischer, R. ; Galbraith, D. W. ; Hasegawa, P. M. ; Jenks, M. ; Kawasaki, S. ; Koiwa, H. ; Kore-eda, S. ; Lee, B. H. ; Michalowski, C. B. ; Misawa, E. ; Nomura, M. ; Ozturk, N. ; Postier, B. ; Prade, R. ; Song, C. P. ; Tanaka, Y. ; Wang, H. ; Zhu, J. K. / A genomics approach towards salt stress tolerance. In: Plant Physiology and Biochemistry. 2001 ; Vol. 39, No. 3-4. pp. 295-311.
@article{3812e1a6c44346d68d6eb1cb76e2decf,
title = "A genomics approach towards salt stress tolerance",
abstract = "Abiotic stresses reduce plant productivity. We focus on gene expression analysis following exposure of plants to high salinity, using salt-shock experiments to mimic stresses that affect hydration and ion homeostasis. The approach includes parallel molecular and genetic experimentation. Comparative analysis is employed to identify functional isoforms and genetic orthologs of stress-regulated genes common to cyanobacteria, fungi, algae and higher plants. We analyze global gene expression profiles monitored under salt stress conditions through abundance profiles in several species: in the cyanobacterium Synechocystis PCC6803, in unicellular (Saccharomyces cerevisiae) and multicellular (Aspergillus nidulans) fungi, the eukaryotic alga Dunaliella salina, the halophytic land plant Mesembryanthemum crystallinum, the glycophytic Oryza sativa and the genetic model Arabidopsis thaliana. Expanding the gene count, stress brings about a significant increase of transcripts for which no function is known. Also, we generate insertional mutants that affect stress tolerance in several organisms. More than 400 000 T-DNA tagged lines of A. thaliana have been generated, and lines with altered salt stress responses have been obtained. Integration of these approaches defines stress phenotypes, catalogs of transcripts and a global representation of gene expression induced by salt stress. Determining evolutionary relationships among these genes, mutants and transcription profiles will provide categories and gene clusters, which reveal ubiquitous cellular aspects of salinity tolerance and unique solutions in multicellular species.",
keywords = "Arabidopsis T-DNA tag, EST sequencing, Functional genomics, Gene expression profiles, Microarray analysis, Phylogenetic profiles of stress tolerance, Salinity stress, Stress tolerance",
author = "Bohnert, {H. J.} and P. Ayoubi and C. Borchert and Bressan, {R. A.} and Burnap, {R. L.} and Cushman, {J. C.} and Cushman, {M. A.} and M. Deyholos and R. Fischer and Galbraith, {D. W.} and Hasegawa, {P. M.} and M. Jenks and S. Kawasaki and H. Koiwa and S. Kore-eda and Lee, {B. H.} and Michalowski, {C. B.} and E. Misawa and M. Nomura and N. Ozturk and B. Postier and R. Prade and Song, {C. P.} and Y. Tanaka and H. Wang and Zhu, {J. K.}",
year = "2001",
doi = "10.1016/S0981-9428(00)01237-7",
language = "English (US)",
volume = "39",
pages = "295--311",
journal = "Plant Physiology and Biochemistry",
issn = "0981-9428",
publisher = "Elsevier Masson SAS",
number = "3-4",

}

TY - JOUR

T1 - A genomics approach towards salt stress tolerance

AU - Bohnert, H. J.

AU - Ayoubi, P.

AU - Borchert, C.

AU - Bressan, R. A.

AU - Burnap, R. L.

AU - Cushman, J. C.

AU - Cushman, M. A.

AU - Deyholos, M.

AU - Fischer, R.

AU - Galbraith, D. W.

AU - Hasegawa, P. M.

AU - Jenks, M.

AU - Kawasaki, S.

AU - Koiwa, H.

AU - Kore-eda, S.

AU - Lee, B. H.

AU - Michalowski, C. B.

AU - Misawa, E.

AU - Nomura, M.

AU - Ozturk, N.

AU - Postier, B.

AU - Prade, R.

AU - Song, C. P.

AU - Tanaka, Y.

AU - Wang, H.

AU - Zhu, J. K.

PY - 2001

Y1 - 2001

N2 - Abiotic stresses reduce plant productivity. We focus on gene expression analysis following exposure of plants to high salinity, using salt-shock experiments to mimic stresses that affect hydration and ion homeostasis. The approach includes parallel molecular and genetic experimentation. Comparative analysis is employed to identify functional isoforms and genetic orthologs of stress-regulated genes common to cyanobacteria, fungi, algae and higher plants. We analyze global gene expression profiles monitored under salt stress conditions through abundance profiles in several species: in the cyanobacterium Synechocystis PCC6803, in unicellular (Saccharomyces cerevisiae) and multicellular (Aspergillus nidulans) fungi, the eukaryotic alga Dunaliella salina, the halophytic land plant Mesembryanthemum crystallinum, the glycophytic Oryza sativa and the genetic model Arabidopsis thaliana. Expanding the gene count, stress brings about a significant increase of transcripts for which no function is known. Also, we generate insertional mutants that affect stress tolerance in several organisms. More than 400 000 T-DNA tagged lines of A. thaliana have been generated, and lines with altered salt stress responses have been obtained. Integration of these approaches defines stress phenotypes, catalogs of transcripts and a global representation of gene expression induced by salt stress. Determining evolutionary relationships among these genes, mutants and transcription profiles will provide categories and gene clusters, which reveal ubiquitous cellular aspects of salinity tolerance and unique solutions in multicellular species.

AB - Abiotic stresses reduce plant productivity. We focus on gene expression analysis following exposure of plants to high salinity, using salt-shock experiments to mimic stresses that affect hydration and ion homeostasis. The approach includes parallel molecular and genetic experimentation. Comparative analysis is employed to identify functional isoforms and genetic orthologs of stress-regulated genes common to cyanobacteria, fungi, algae and higher plants. We analyze global gene expression profiles monitored under salt stress conditions through abundance profiles in several species: in the cyanobacterium Synechocystis PCC6803, in unicellular (Saccharomyces cerevisiae) and multicellular (Aspergillus nidulans) fungi, the eukaryotic alga Dunaliella salina, the halophytic land plant Mesembryanthemum crystallinum, the glycophytic Oryza sativa and the genetic model Arabidopsis thaliana. Expanding the gene count, stress brings about a significant increase of transcripts for which no function is known. Also, we generate insertional mutants that affect stress tolerance in several organisms. More than 400 000 T-DNA tagged lines of A. thaliana have been generated, and lines with altered salt stress responses have been obtained. Integration of these approaches defines stress phenotypes, catalogs of transcripts and a global representation of gene expression induced by salt stress. Determining evolutionary relationships among these genes, mutants and transcription profiles will provide categories and gene clusters, which reveal ubiquitous cellular aspects of salinity tolerance and unique solutions in multicellular species.

KW - Arabidopsis T-DNA tag

KW - EST sequencing

KW - Functional genomics

KW - Gene expression profiles

KW - Microarray analysis

KW - Phylogenetic profiles of stress tolerance

KW - Salinity stress

KW - Stress tolerance

UR - http://www.scopus.com/inward/record.url?scp=0035055216&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035055216&partnerID=8YFLogxK

U2 - 10.1016/S0981-9428(00)01237-7

DO - 10.1016/S0981-9428(00)01237-7

M3 - Article

AN - SCOPUS:0035055216

VL - 39

SP - 295

EP - 311

JO - Plant Physiology and Biochemistry

JF - Plant Physiology and Biochemistry

SN - 0981-9428

IS - 3-4

ER -