A high-performance microsystem for isolating circulating tumor cells

Xiangjun Zheng, Luthur Siu Lun Cheung, Joyce A. Schroeder, Linan Jiang, Yitshak Zohar

Research output: Contribution to journalArticle

51 Scopus citations

Abstract

A unique flow field pattern in a bio-functional microchannel is utilized to significantly enhance the performance of a microsystem developed for selectively isolating circulating tumor cells from cell suspensions. For high performance of such systems, disposal of maximum non-target species is just as important as retention of maximum target species; unfortunately, most studies ignore or fail to report this aspect. Therefore, sensitivity and specificity are introduced as quantitative criteria to evaluate the system performance enabling a direct comparison among systems employing different techniques. The newly proposed fluidic scheme combines a slow flow field, for maximum target-cell attachment, followed by a faster flow field, for maximum detachment of non-target cells. Suspensions of homogeneous or binary mixtures of circulating breast tumor cells, with varying relative concentrations, were driven through antibody-functionalized microchannels. Either EpCAM or cadherin-11 transmembrane receptors were targeted to selectively capture target cells from the suspensions. Cadherin-11-expressing MDA-MB-231 cancer cells were used as target cells, while BT-20 cells were used as non-target cells as they do not express cadherin-11. The attachment and detachment of these two cell lines are characterized, and a two-step attachment/detachment flow field pattern is implemented to enhance the system performance in capturing target cells from binary mixtures. While the system sensitivity remains high, above 0.95, the specificity increases from about 0.85 to 0.95 solely due to the second detachment step even for a 1:1000 relative concentration of the target cells.

Original languageEnglish (US)
Pages (from-to)3269-3276
Number of pages8
JournalLab on a Chip
Volume11
Issue number19
DOIs
StatePublished - Oct 7 2011

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Chemistry(all)
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'A high-performance microsystem for isolating circulating tumor cells'. Together they form a unique fingerprint.

  • Cite this