A microfluidic model for organ-specific extravasation of circulating tumor cells

R. Riahi, Y. L. Yang, H. Kim, L. Jiang, P. K. Wong, Y. Zohar

Research output: Contribution to journalArticle

24 Scopus citations

Abstract

Circulating tumor cells (CTCs) are the principal vehicle for the spread of non-hematologic cancer disease from a primary tumor, involving extravasation of CTCs across blood vessel walls, to form secondary tumors in remote organs. Herein, a polydimethylsiloxane-based microfluidic system is developed and characterized for in vitro systematic studies of organ-specific extravasation of CTCs. The system recapitulates the two major aspects of the in vivo extravasation microenvironment: local signaling chemokine gradients in a vessel with an endothelial monolayer. The parameters controlling the locally stable chemokine gradients, flow rate, and initial chemokine concentration are investigated experimentally and numerically. The microchannel surface treatment effect on the confluency and adhesion of the endothelial monolayer under applied shear flow has also been characterized experimentally. Further, the conditions for driving a suspension of CTCs through the microfluidic system are discussed while simultaneously maintaining both the local chemokine gradients and the confluent endothelial monolayer. Finally, the microfluidic system is utilized to demonstrate extravasation of MDA-MB-231 cancer cells in the presence of CXCL12 chemokine gradients. Consistent with the hypothesis of organ-specific extravasation, control experiments are presented to substantiate the observation that the MDA-MB-231 cell migration is attributed to chemotaxis rather than a random process.

Original languageEnglish (US)
Article number024103
JournalBiomicrofluidics
Volume8
Issue number2
DOIs
StatePublished - Mar 1 2014

ASJC Scopus subject areas

  • Biomedical Engineering
  • Materials Science(all)
  • Condensed Matter Physics
  • Fluid Flow and Transfer Processes
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'A microfluidic model for organ-specific extravasation of circulating tumor cells'. Together they form a unique fingerprint.

  • Cite this