A MODIFIED SPLIT BREGMAN ALGORITHM FOR COMPUTING MICROSTRUCTURE THROUGH YOUNG MEASURES

Gabriela Jaramillo, Shankar C. Venkataramani

Research output: Contribution to journalArticlepeer-review

Abstract

The goal of this paper is to describe the oscillatory microstructure that can emerge from minimizing sequences for nonconvex energies. We consider integral functionals that are defined on real valued (scalar) functions u(x) which are nonconvex in the gradient ux and possibly also in u. To characterize the microstructures for these nonconvex energies, we minimize the associated relaxed energy using two novel approaches: i) a semi-analytical method based on control systems theory, ii) and a numerical scheme that combines convex splitting together with a modified version of the split Bregman algorithm. These solutions are then used to gain information about minimizing sequences of the original problem and the spatial distribution of microstructure.

MSC Codes 49J45, 65K10, 49J52

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Dec 6 2019

Keywords

  • Microstructure
  • Nonconvex energies
  • Split Bregman algorithm
  • Young measures

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'A MODIFIED SPLIT BREGMAN ALGORITHM FOR COMPUTING MICROSTRUCTURE THROUGH YOUNG MEASURES'. Together they form a unique fingerprint.

Cite this