A multi-scale study of infrared and radio emission from Scd galaxy M 33

F. S. Tabatabaei, R. Beck, M. Krause, E. M. Berkhuijsen, R. Gehrz, K. D. Gordon, J. L. Hinz, R. Humphreys, K. McQuinn, E. Polomski, George H. Rieke, C. E. Woodward

Research output: Contribution to journalArticle

61 Citations (Scopus)

Abstract

Aims. We investigate the energy sources of the infrared (IR) emission and their relation to the radio continuum emission at various spatial scales within the Scd galaxy M 33. Methods. We use the data at the Spitzer wavelengths of 24, 70, and 160μm, as well as recent radio continuum maps at 3.6cm and 20 cm observed with the 100-m Effelsberg telescope and VLA, respectively. We use the wavelet transform of these maps to a) separate the diffuse emission components from compact sources, b) compare the emission at different wavelengths, and c) study the radio-IR correlation at various spatial scales. An Ha map serves as a tracer of the star forming regions and as an indicator of the thermal radio emission. Results. The bright HII regions affect the wavelet spectra causing dominant small scales or decreasing trends towards the larger scales. The dominant scale of the 70μm emission is larger than that of the 24μm emission, while the 160μm emission shows a smooth wavelet spectrum. The radio and Hα maps are well correlated with all 3 MIPS maps, although their correlations with the 160μm map are weaker. After subtracting the bright HII regions, the 24 and 70μm maps show weaker correlations with the 20cm map than with the 3.6cm map at most scales. We also find a strong correlation between the 3.6cm and Hα emission at all scales. Conclusions. Comparing the results with and without the bright HII regions, we conclude that the IR emission is influenced by young, massive stars increasingly with decreasing wavelength from 160 to 24μm. The radio-IR correlations indicate that the warm dust-thermal radio correlation is stronger than the cold dust-nonthermal radio correlation at scales smaller than 4 kpc. A perfect 3.6 cm-Hα correlation implies that extinction has no significant effect on Hα emitting structures.

Original languageEnglish (US)
Pages (from-to)509-519
Number of pages11
JournalAstronomy and Astrophysics
Volume466
Issue number2
DOIs
StatePublished - May 2007

Fingerprint

radio emission
radio
galaxies
wavelet
wavelength
dust
wavelengths
continuums
energy sources
thermal emission
massive stars
wavelet analysis
tracers
extinction
transform
telescopes
tracer
trends
stars

Keywords

  • Galaxies: clusters: individual: M 33
  • Infrared: galaxies
  • ISM: HII regions
  • Methods: data analysis
  • Radio continuum: galaxies

ASJC Scopus subject areas

  • Space and Planetary Science

Cite this

Tabatabaei, F. S., Beck, R., Krause, M., Berkhuijsen, E. M., Gehrz, R., Gordon, K. D., ... Woodward, C. E. (2007). A multi-scale study of infrared and radio emission from Scd galaxy M 33. Astronomy and Astrophysics, 466(2), 509-519. https://doi.org/10.1051/0004-6361:20066731

A multi-scale study of infrared and radio emission from Scd galaxy M 33. / Tabatabaei, F. S.; Beck, R.; Krause, M.; Berkhuijsen, E. M.; Gehrz, R.; Gordon, K. D.; Hinz, J. L.; Humphreys, R.; McQuinn, K.; Polomski, E.; Rieke, George H.; Woodward, C. E.

In: Astronomy and Astrophysics, Vol. 466, No. 2, 05.2007, p. 509-519.

Research output: Contribution to journalArticle

Tabatabaei, FS, Beck, R, Krause, M, Berkhuijsen, EM, Gehrz, R, Gordon, KD, Hinz, JL, Humphreys, R, McQuinn, K, Polomski, E, Rieke, GH & Woodward, CE 2007, 'A multi-scale study of infrared and radio emission from Scd galaxy M 33', Astronomy and Astrophysics, vol. 466, no. 2, pp. 509-519. https://doi.org/10.1051/0004-6361:20066731
Tabatabaei FS, Beck R, Krause M, Berkhuijsen EM, Gehrz R, Gordon KD et al. A multi-scale study of infrared and radio emission from Scd galaxy M 33. Astronomy and Astrophysics. 2007 May;466(2):509-519. https://doi.org/10.1051/0004-6361:20066731
Tabatabaei, F. S. ; Beck, R. ; Krause, M. ; Berkhuijsen, E. M. ; Gehrz, R. ; Gordon, K. D. ; Hinz, J. L. ; Humphreys, R. ; McQuinn, K. ; Polomski, E. ; Rieke, George H. ; Woodward, C. E. / A multi-scale study of infrared and radio emission from Scd galaxy M 33. In: Astronomy and Astrophysics. 2007 ; Vol. 466, No. 2. pp. 509-519.
@article{ed55bd68c52d41eaa5229d3d72a8ce04,
title = "A multi-scale study of infrared and radio emission from Scd galaxy M 33",
abstract = "Aims. We investigate the energy sources of the infrared (IR) emission and their relation to the radio continuum emission at various spatial scales within the Scd galaxy M 33. Methods. We use the data at the Spitzer wavelengths of 24, 70, and 160μm, as well as recent radio continuum maps at 3.6cm and 20 cm observed with the 100-m Effelsberg telescope and VLA, respectively. We use the wavelet transform of these maps to a) separate the diffuse emission components from compact sources, b) compare the emission at different wavelengths, and c) study the radio-IR correlation at various spatial scales. An Ha map serves as a tracer of the star forming regions and as an indicator of the thermal radio emission. Results. The bright HII regions affect the wavelet spectra causing dominant small scales or decreasing trends towards the larger scales. The dominant scale of the 70μm emission is larger than that of the 24μm emission, while the 160μm emission shows a smooth wavelet spectrum. The radio and Hα maps are well correlated with all 3 MIPS maps, although their correlations with the 160μm map are weaker. After subtracting the bright HII regions, the 24 and 70μm maps show weaker correlations with the 20cm map than with the 3.6cm map at most scales. We also find a strong correlation between the 3.6cm and Hα emission at all scales. Conclusions. Comparing the results with and without the bright HII regions, we conclude that the IR emission is influenced by young, massive stars increasingly with decreasing wavelength from 160 to 24μm. The radio-IR correlations indicate that the warm dust-thermal radio correlation is stronger than the cold dust-nonthermal radio correlation at scales smaller than 4 kpc. A perfect 3.6 cm-Hα correlation implies that extinction has no significant effect on Hα emitting structures.",
keywords = "Galaxies: clusters: individual: M 33, Infrared: galaxies, ISM: HII regions, Methods: data analysis, Radio continuum: galaxies",
author = "Tabatabaei, {F. S.} and R. Beck and M. Krause and Berkhuijsen, {E. M.} and R. Gehrz and Gordon, {K. D.} and Hinz, {J. L.} and R. Humphreys and K. McQuinn and E. Polomski and Rieke, {George H.} and Woodward, {C. E.}",
year = "2007",
month = "5",
doi = "10.1051/0004-6361:20066731",
language = "English (US)",
volume = "466",
pages = "509--519",
journal = "Astronomy and Astrophysics",
issn = "0004-6361",
publisher = "EDP Sciences",
number = "2",

}

TY - JOUR

T1 - A multi-scale study of infrared and radio emission from Scd galaxy M 33

AU - Tabatabaei, F. S.

AU - Beck, R.

AU - Krause, M.

AU - Berkhuijsen, E. M.

AU - Gehrz, R.

AU - Gordon, K. D.

AU - Hinz, J. L.

AU - Humphreys, R.

AU - McQuinn, K.

AU - Polomski, E.

AU - Rieke, George H.

AU - Woodward, C. E.

PY - 2007/5

Y1 - 2007/5

N2 - Aims. We investigate the energy sources of the infrared (IR) emission and their relation to the radio continuum emission at various spatial scales within the Scd galaxy M 33. Methods. We use the data at the Spitzer wavelengths of 24, 70, and 160μm, as well as recent radio continuum maps at 3.6cm and 20 cm observed with the 100-m Effelsberg telescope and VLA, respectively. We use the wavelet transform of these maps to a) separate the diffuse emission components from compact sources, b) compare the emission at different wavelengths, and c) study the radio-IR correlation at various spatial scales. An Ha map serves as a tracer of the star forming regions and as an indicator of the thermal radio emission. Results. The bright HII regions affect the wavelet spectra causing dominant small scales or decreasing trends towards the larger scales. The dominant scale of the 70μm emission is larger than that of the 24μm emission, while the 160μm emission shows a smooth wavelet spectrum. The radio and Hα maps are well correlated with all 3 MIPS maps, although their correlations with the 160μm map are weaker. After subtracting the bright HII regions, the 24 and 70μm maps show weaker correlations with the 20cm map than with the 3.6cm map at most scales. We also find a strong correlation between the 3.6cm and Hα emission at all scales. Conclusions. Comparing the results with and without the bright HII regions, we conclude that the IR emission is influenced by young, massive stars increasingly with decreasing wavelength from 160 to 24μm. The radio-IR correlations indicate that the warm dust-thermal radio correlation is stronger than the cold dust-nonthermal radio correlation at scales smaller than 4 kpc. A perfect 3.6 cm-Hα correlation implies that extinction has no significant effect on Hα emitting structures.

AB - Aims. We investigate the energy sources of the infrared (IR) emission and their relation to the radio continuum emission at various spatial scales within the Scd galaxy M 33. Methods. We use the data at the Spitzer wavelengths of 24, 70, and 160μm, as well as recent radio continuum maps at 3.6cm and 20 cm observed with the 100-m Effelsberg telescope and VLA, respectively. We use the wavelet transform of these maps to a) separate the diffuse emission components from compact sources, b) compare the emission at different wavelengths, and c) study the radio-IR correlation at various spatial scales. An Ha map serves as a tracer of the star forming regions and as an indicator of the thermal radio emission. Results. The bright HII regions affect the wavelet spectra causing dominant small scales or decreasing trends towards the larger scales. The dominant scale of the 70μm emission is larger than that of the 24μm emission, while the 160μm emission shows a smooth wavelet spectrum. The radio and Hα maps are well correlated with all 3 MIPS maps, although their correlations with the 160μm map are weaker. After subtracting the bright HII regions, the 24 and 70μm maps show weaker correlations with the 20cm map than with the 3.6cm map at most scales. We also find a strong correlation between the 3.6cm and Hα emission at all scales. Conclusions. Comparing the results with and without the bright HII regions, we conclude that the IR emission is influenced by young, massive stars increasingly with decreasing wavelength from 160 to 24μm. The radio-IR correlations indicate that the warm dust-thermal radio correlation is stronger than the cold dust-nonthermal radio correlation at scales smaller than 4 kpc. A perfect 3.6 cm-Hα correlation implies that extinction has no significant effect on Hα emitting structures.

KW - Galaxies: clusters: individual: M 33

KW - Infrared: galaxies

KW - ISM: HII regions

KW - Methods: data analysis

KW - Radio continuum: galaxies

UR - http://www.scopus.com/inward/record.url?scp=34248218244&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34248218244&partnerID=8YFLogxK

U2 - 10.1051/0004-6361:20066731

DO - 10.1051/0004-6361:20066731

M3 - Article

AN - SCOPUS:34248218244

VL - 466

SP - 509

EP - 519

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0004-6361

IS - 2

ER -