A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge

Waranyoo Phoolcharoen, John M. Dye, Jacquelyn Kilbourne, Khanrat Piensook, William D. Pratt, Charles J. Arntzen, Qiang Chen, Hugh S. Mason, Melissa M. Herbst-Kralovetz

Research output: Contribution to journalArticle

54 Scopus citations

Abstract

Ebola hemorrhagic fever is an acute and often deadly disease caused by Ebola virus (EBOV). The possible intentional use of this virus against human populations has led to design of vaccines that could be incorporated into a national stockpile for biological threat reduction. We have evaluated the immunogenicity and efficacy of an EBOV vaccine candidate in which the viral surface glycoprotein is biomanufactured as a fusion to a monoclonal antibody that recognizes an epitope in glycoprotein, resulting in the production of Ebola immune complexes (EICs). Although antigen-antibody immune complexes are known to be efficiently processed and presented to immune effector cells, we found that codelivery of the EIC with Toll-like receptor agonists elicited a more robust antibody response in mice than did EIC alone. Among the compounds tested, polyinosinic:polycytidylic acid (PIC, a Toll-like receptor 3 agonist) was highly effective as an adjuvant agent. After vaccinating mice with EIC plus PIC, 80% of the animals were protected against a lethal challenge with live EBOV (30,000 LD 50 of mouse adapted virus). Surviving animals showed a mixed Th1/Th2 response to the antigen, suggesting this may be important for protection. Survival after vaccination with EIC plus PIC was statistically equivalent to that achieved with an alternative viral vector vaccine candidate reported in the literature. Because nonreplicating subunit vaccines offer the possibility of formulation for cost-effective, long-term storage in biothreat reduction repositories, EIC is an attractive option for public health defense measures.

Original languageEnglish (US)
Pages (from-to)20695-20700
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume108
Issue number51
DOIs
StatePublished - Dec 20 2011

Keywords

  • Antibody-antigen fusion
  • Ebola glycoprotein
  • Ebola vaccine
  • Immunopotentiator
  • Protective antibody

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge'. Together they form a unique fingerprint.

  • Cite this