A re-examination of the phylogenetic relationship between the causal agents of carrot black rot, Alternaria radicina and A. carotiincultae

Myung Soo Park, Casey E. Romanoski, Barry M. Pryor

Research output: Contribution to journalArticle

22 Scopus citations


The phylogenetic relationship between Alternaria radicina and A. carotiincultae was re-examined based on morphology, sequence analysis of rDNA (ITS and mitochondrial small subunit [mtSSU]), protein coding genes (actin [ACT], β-tubulin, chitin synthase [CHS], translation elongation factor [EF-1a], Alternaria allergen a1 [Alt a1], and glyceraldehyde-3-phosphate dehydrogenase [gpd]), and RAPD and ISSR analysis of total genomic DNA. Although some morphological characters overlapped to a degree, with A. radicina isolates expressing moderate variation and A. carotiincultae isolates being highly uniform, A. carotiincultae could be differentiated from A. radicina based on significantly greater growth rate on potato dextrose agar (PDA) or acidified PDA (APDA) and average number of transverse septa per conidium. Sequence of rDNA and two protein coding genes, ACT and CHS, were invariant between species. However polymorphism with the EF-1a, β-tubulin, and Alt a1 gene strictly separated the population of A. radicina and A. carotiincultae as distinct lineages, as did RAPD and ISSR analysis. The polymorphic gpd gene did not strictly separate the two species. However isolates of A. radicina encompassed several haplotypes, one of which was the exclusive haplotype possessed by A. carotiincultae isolates, suggesting evidence of incomplete lineage sorting. The results suggest that A. carotiincultae is closely related to A. radicina but is a recently divergent and distinct lineage, which supports its status as a separate species.

Original languageEnglish (US)
Pages (from-to)511-527
Number of pages17
Issue number3
StatePublished - May 1 2008



  • A. carotiincultae
  • A. radicina
  • Lineage sorting
  • Phylogenetic relationship
  • Protein coding genes
  • rDNA

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this