A specific effect of muscle cells on the distribution of presynaptic proteins in neurites and its absence in a C2 muscle cell variant

M. T. Lupa, Herman Gordon, Z. W. Hall

Research output: Contribution to journalArticle

23 Scopus citations


The distribution of neurofilament (NF) and synaptic vesicle (SV) proteins in neurites cultured in vitro was visualized with immunocytochemical methods. NF and SV proteins were detected in neurites from both embryonic mouse spinal cord and chick ciliary ganglion neurons. NF proteins generally occupied more proximal, unbranched neurite segments while SV proteins were most often found in highly branched terminal segments. Neurites from mouse spinal cord cells showed a striking segregation of the NF and SV proteins into distinct domains; neurites from chick ciliary ganglion cells exhibited a similar, though less pronounced segregation. In cocultures of neurons and muscle cells, the neurite segments in contact with myotubes more often stained for SV than for NF while the opposite was true for neurites not in contact with myotubes. The preferential association of SV neurites with myotubes was also observed when the myotubes were previously fixed with paraformaldehyde. This association was absent in neurites growing over Chinese hamster ovary cells, suggesting that the effect is specific for muscle cells. Coculture of neurons with variant strains of C2 myotubes that are deficient in AChR (1R-) or proteoglycans (S27) revealed a preferential association of SV neurites with 1R- myotubes but not with S27 myotubes. Thus, proteoglycans on the surface of C2 myotubes may influence the growth and/or differentiation of presynaptic neurons.

Original languageEnglish (US)
Pages (from-to)31-43
Number of pages13
JournalDevelopmental Biology
Issue number1
Publication statusPublished - 1990
Externally publishedYes


ASJC Scopus subject areas

  • Developmental Biology

Cite this