Michelle L. Wilson, Ann I. Zabludoff, S. Mark Ammons, Ivelina G. Momcheva, Kurtis A. Williams, Charles R. Keeton

Research output: Contribution to journalReview articlepeer-review

16 Scopus citations


With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z grp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z grp < 0.6. The groups have radial velocity dispersions of 60 ≤ σ grp ≤ 1200 km s-1 with a median of 350 km s-1. We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ∼85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ grp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σ grp ≥ 500 km s-1) group or group candidate projected within 2′ of the lens.

Original languageEnglish (US)
Article number194
JournalAstrophysical Journal
Issue number2
StatePublished - Dec 20 2016


  • catalogs
  • galaxies: groups: general
  • gravitational lensing: strong

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'A SPECTROSCOPIC SURVEY of the FIELDS of 28 STRONG GRAVITATIONAL LENSES: The GROUP CATALOG'. Together they form a unique fingerprint.

Cite this