A Thomson scattering post-processor for the MEDUSA hydrocode

J. Hawreliak, D. Chambers, S. Glenzer, R. S. Marjoribanks, M. Notley, Philip A Pinto, O. Renner, P. Sondhauss, R. Steel, S. Topping, E. Wolfrum, P. Young, J. S. Wark

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

In order to understand the physical processes that occur in laser-produced plasmas it is necessary to diagnose the time-dependent hydrodynamic conditions. Thomson scattering is, in principle, an ideal diagnostic as it provides a non-intrusive method of measuring ion and electron temperature, electron density, plasma velocity, and heat flow. We describe here a post-processor for the MEDUSA hydrocode that simulates streak camera images of the Thomson spectra. The post-processor can be used in three ways: (1) creating simulated streak camera images that can be compared directly with experimental data, (2) evaluating experimental designs to determine the viability of the Thomson scattering diagnostic, and (3) as an automated data analysis routine for extracting hydrodynamic parameters from a calibrated experimental streak camera image.

Original languageEnglish (US)
Pages (from-to)383-395
Number of pages13
JournalJournal of Quantitative Spectroscopy and Radiative Transfer
Volume71
Issue number2-6
DOIs
StatePublished - Oct 15 2001

Fingerprint

Streak cameras
streak cameras
Thomson scattering
central processing units
Scattering
Hydrodynamics
hydrodynamics
Laser produced plasmas
Electron temperature
ion temperature
laser plasmas
viability
heat transmission
Design of experiments
Carrier concentration
electron energy
Ions
Heat transfer
Plasmas

Keywords

  • Hydrocobe
  • Laser-produced-plasma
  • Thomson scattering

ASJC Scopus subject areas

  • Spectroscopy
  • Atomic and Molecular Physics, and Optics

Cite this

Hawreliak, J., Chambers, D., Glenzer, S., Marjoribanks, R. S., Notley, M., Pinto, P. A., ... Wark, J. S. (2001). A Thomson scattering post-processor for the MEDUSA hydrocode. Journal of Quantitative Spectroscopy and Radiative Transfer, 71(2-6), 383-395. https://doi.org/10.1016/S0022-4073(01)00084-X

A Thomson scattering post-processor for the MEDUSA hydrocode. / Hawreliak, J.; Chambers, D.; Glenzer, S.; Marjoribanks, R. S.; Notley, M.; Pinto, Philip A; Renner, O.; Sondhauss, P.; Steel, R.; Topping, S.; Wolfrum, E.; Young, P.; Wark, J. S.

In: Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 71, No. 2-6, 15.10.2001, p. 383-395.

Research output: Contribution to journalArticle

Hawreliak, J, Chambers, D, Glenzer, S, Marjoribanks, RS, Notley, M, Pinto, PA, Renner, O, Sondhauss, P, Steel, R, Topping, S, Wolfrum, E, Young, P & Wark, JS 2001, 'A Thomson scattering post-processor for the MEDUSA hydrocode', Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 71, no. 2-6, pp. 383-395. https://doi.org/10.1016/S0022-4073(01)00084-X
Hawreliak, J. ; Chambers, D. ; Glenzer, S. ; Marjoribanks, R. S. ; Notley, M. ; Pinto, Philip A ; Renner, O. ; Sondhauss, P. ; Steel, R. ; Topping, S. ; Wolfrum, E. ; Young, P. ; Wark, J. S. / A Thomson scattering post-processor for the MEDUSA hydrocode. In: Journal of Quantitative Spectroscopy and Radiative Transfer. 2001 ; Vol. 71, No. 2-6. pp. 383-395.
@article{7674d822dbc54d48bcb02dbcfe4a800a,
title = "A Thomson scattering post-processor for the MEDUSA hydrocode",
abstract = "In order to understand the physical processes that occur in laser-produced plasmas it is necessary to diagnose the time-dependent hydrodynamic conditions. Thomson scattering is, in principle, an ideal diagnostic as it provides a non-intrusive method of measuring ion and electron temperature, electron density, plasma velocity, and heat flow. We describe here a post-processor for the MEDUSA hydrocode that simulates streak camera images of the Thomson spectra. The post-processor can be used in three ways: (1) creating simulated streak camera images that can be compared directly with experimental data, (2) evaluating experimental designs to determine the viability of the Thomson scattering diagnostic, and (3) as an automated data analysis routine for extracting hydrodynamic parameters from a calibrated experimental streak camera image.",
keywords = "Hydrocobe, Laser-produced-plasma, Thomson scattering",
author = "J. Hawreliak and D. Chambers and S. Glenzer and Marjoribanks, {R. S.} and M. Notley and Pinto, {Philip A} and O. Renner and P. Sondhauss and R. Steel and S. Topping and E. Wolfrum and P. Young and Wark, {J. S.}",
year = "2001",
month = "10",
day = "15",
doi = "10.1016/S0022-4073(01)00084-X",
language = "English (US)",
volume = "71",
pages = "383--395",
journal = "Journal of Quantitative Spectroscopy and Radiative Transfer",
issn = "0022-4073",
publisher = "Elsevier Limited",
number = "2-6",

}

TY - JOUR

T1 - A Thomson scattering post-processor for the MEDUSA hydrocode

AU - Hawreliak, J.

AU - Chambers, D.

AU - Glenzer, S.

AU - Marjoribanks, R. S.

AU - Notley, M.

AU - Pinto, Philip A

AU - Renner, O.

AU - Sondhauss, P.

AU - Steel, R.

AU - Topping, S.

AU - Wolfrum, E.

AU - Young, P.

AU - Wark, J. S.

PY - 2001/10/15

Y1 - 2001/10/15

N2 - In order to understand the physical processes that occur in laser-produced plasmas it is necessary to diagnose the time-dependent hydrodynamic conditions. Thomson scattering is, in principle, an ideal diagnostic as it provides a non-intrusive method of measuring ion and electron temperature, electron density, plasma velocity, and heat flow. We describe here a post-processor for the MEDUSA hydrocode that simulates streak camera images of the Thomson spectra. The post-processor can be used in three ways: (1) creating simulated streak camera images that can be compared directly with experimental data, (2) evaluating experimental designs to determine the viability of the Thomson scattering diagnostic, and (3) as an automated data analysis routine for extracting hydrodynamic parameters from a calibrated experimental streak camera image.

AB - In order to understand the physical processes that occur in laser-produced plasmas it is necessary to diagnose the time-dependent hydrodynamic conditions. Thomson scattering is, in principle, an ideal diagnostic as it provides a non-intrusive method of measuring ion and electron temperature, electron density, plasma velocity, and heat flow. We describe here a post-processor for the MEDUSA hydrocode that simulates streak camera images of the Thomson spectra. The post-processor can be used in three ways: (1) creating simulated streak camera images that can be compared directly with experimental data, (2) evaluating experimental designs to determine the viability of the Thomson scattering diagnostic, and (3) as an automated data analysis routine for extracting hydrodynamic parameters from a calibrated experimental streak camera image.

KW - Hydrocobe

KW - Laser-produced-plasma

KW - Thomson scattering

UR - http://www.scopus.com/inward/record.url?scp=6644225944&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=6644225944&partnerID=8YFLogxK

U2 - 10.1016/S0022-4073(01)00084-X

DO - 10.1016/S0022-4073(01)00084-X

M3 - Article

AN - SCOPUS:6644225944

VL - 71

SP - 383

EP - 395

JO - Journal of Quantitative Spectroscopy and Radiative Transfer

JF - Journal of Quantitative Spectroscopy and Radiative Transfer

SN - 0022-4073

IS - 2-6

ER -