A wave-bending structure at Ka-band using 3D-printed metamaterial

Junqiang Wu, Min Liang, Hao Xin

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.

Original languageEnglish (US)
Article number124109
JournalJournal of Applied Physics
Volume123
Issue number12
DOIs
StatePublished - Mar 28 2018

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'A wave-bending structure at Ka-band using 3D-printed metamaterial'. Together they form a unique fingerprint.

  • Cite this