Achromatic focal plane mask for exoplanet imaging coronagraphy

Kevin Newman, Rus Belikov, Olivier Guyon, Kunjithapatham Balasubramanian, Dan Wilson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e-10 at 4 λ/D and 1e-9 at 2 λ/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization (PIAA) coronagraph.

Original languageEnglish (US)
Title of host publicationTechniques and Instrumentation for Detection of Exoplanets VI
DOIs
StatePublished - 2013
EventTechniques and Instrumentation for Detection of Exoplanets VI - San Diego, CA, United States
Duration: Aug 26 2013Aug 29 2013

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8864
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherTechniques and Instrumentation for Detection of Exoplanets VI
CountryUnited States
CitySan Diego, CA
Period8/26/138/29/13

Keywords

  • Coronagraph
  • Focal plane mask
  • PIAA

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Achromatic focal plane mask for exoplanet imaging coronagraphy'. Together they form a unique fingerprint.

Cite this