Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum

Wynand A. Smythe, Keith A Joiner, Heinrich C. Hoppe

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum. Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.

Original languageEnglish (US)
Pages (from-to)452-464
Number of pages13
JournalCellular Microbiology
Volume10
Issue number2
DOIs
StatePublished - Feb 2008

Fingerprint

Falciparum Malaria
Actins
Parasites
jasplakinolide
Endocytosis
Transport Vesicles
Cytochalasin D
Vacuoles
Protease Inhibitors
Electron microscopy
Electron Microscopy
Hemoglobins
Horseradish Peroxidase
Cell membranes
Eukaryota
Actin Cytoskeleton
Fluorescence Microscopy
Malaria
Cell Movement
Digestion

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Microbiology

Cite this

Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum. / Smythe, Wynand A.; Joiner, Keith A; Hoppe, Heinrich C.

In: Cellular Microbiology, Vol. 10, No. 2, 02.2008, p. 452-464.

Research output: Contribution to journalArticle

@article{36cfe7c20e08426faa509617736773dd,
title = "Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum",
abstract = "The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum. Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.",
author = "Smythe, {Wynand A.} and Joiner, {Keith A} and Hoppe, {Heinrich C.}",
year = "2008",
month = "2",
doi = "10.1111/j.1462-5822.2007.01058.x",
language = "English (US)",
volume = "10",
pages = "452--464",
journal = "Cellular Microbiology",
issn = "1462-5814",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum

AU - Smythe, Wynand A.

AU - Joiner, Keith A

AU - Hoppe, Heinrich C.

PY - 2008/2

Y1 - 2008/2

N2 - The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum. Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.

AB - The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum. Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.

UR - http://www.scopus.com/inward/record.url?scp=38049140949&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38049140949&partnerID=8YFLogxK

U2 - 10.1111/j.1462-5822.2007.01058.x

DO - 10.1111/j.1462-5822.2007.01058.x

M3 - Article

C2 - 17944961

AN - SCOPUS:38049140949

VL - 10

SP - 452

EP - 464

JO - Cellular Microbiology

JF - Cellular Microbiology

SN - 1462-5814

IS - 2

ER -