Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator

Ashish Singh, Jesse C Little

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

The response of a low-speed turbulent mixing layer to perturbations from a pulsed Nd:YAG laser and an ns-DBD plasma actuator is examined experimentally. The objective of this work is to further clarify the mechanisms associated with flow control via thermal perturbations (energy deposition). The results are placed in context by contrasting them with previous work on the same facility using ac-DBD plasma actuators which function through electrohydrodynamic effects (i.e. momentum). The mixing layer is examined downstream in a region of maximum possible growth using total pressure measurements, PIV and hot wire anemometry where possible. The observed velocity fluctuations are compared between different actuation techniques. Attention is then shifted to the mixing layer origin (splitter plate trailing edge) to provide an understanding of the nature of the perturbations that result in downstream mixing layer growth. PIV and schlieren in this region show that the laser generates a discrete perturbation that propagates downstream resembling an impulse response. Single pulse ns-DBD forcing is absent any clear effect, but burst mode forcing produces fluctuations that suggest thermal excitation rather than momentum-based perturbations as observed in ac-DBDs. In the context of previous work, these results suggest that ns-DBDs (and thermal perturbations in general) are capable of increased control authority using a higher energy single pulses (e.g. Nd:YAG laser) or high frequency bursts (e.g. ns-DBD). These results also provide implications regarding the spatial distribution of heating, convective behavior of the heated gas and amplitude scaling of thermal perturbations for flow control.

Original languageEnglish (US)
Title of host publication54th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624103933
StatePublished - 2016
Event54th AIAA Aerospace Sciences Meeting, 2016 - San Diego, United States
Duration: Jan 4 2016Jan 8 2016

Other

Other54th AIAA Aerospace Sciences Meeting, 2016
CountryUnited States
CitySan Diego
Period1/4/161/8/16

Fingerprint

Pulsed lasers
Actuators
Plasmas
Flow control
Lasers
Momentum
Electrohydrodynamics
Pressure measurement
Impulse response
Spatial distribution
Laser pulses
Wire
Heating
Hot Temperature
Gases

ASJC Scopus subject areas

  • Aerospace Engineering

Cite this

Singh, A., & Little, J. C. (2016). Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator. In 54th AIAA Aerospace Sciences Meeting American Institute of Aeronautics and Astronautics Inc, AIAA.

Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator. / Singh, Ashish; Little, Jesse C.

54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics Inc, AIAA, 2016.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Singh, A & Little, JC 2016, Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator. in 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics Inc, AIAA, 54th AIAA Aerospace Sciences Meeting, 2016, San Diego, United States, 1/4/16.
Singh A, Little JC. Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator. In 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics Inc, AIAA. 2016
Singh, Ashish ; Little, Jesse C. / Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator. 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics Inc, AIAA, 2016.
@inproceedings{274e05fd35094d299111c0c1a9ccddb0,
title = "Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator",
abstract = "The response of a low-speed turbulent mixing layer to perturbations from a pulsed Nd:YAG laser and an ns-DBD plasma actuator is examined experimentally. The objective of this work is to further clarify the mechanisms associated with flow control via thermal perturbations (energy deposition). The results are placed in context by contrasting them with previous work on the same facility using ac-DBD plasma actuators which function through electrohydrodynamic effects (i.e. momentum). The mixing layer is examined downstream in a region of maximum possible growth using total pressure measurements, PIV and hot wire anemometry where possible. The observed velocity fluctuations are compared between different actuation techniques. Attention is then shifted to the mixing layer origin (splitter plate trailing edge) to provide an understanding of the nature of the perturbations that result in downstream mixing layer growth. PIV and schlieren in this region show that the laser generates a discrete perturbation that propagates downstream resembling an impulse response. Single pulse ns-DBD forcing is absent any clear effect, but burst mode forcing produces fluctuations that suggest thermal excitation rather than momentum-based perturbations as observed in ac-DBDs. In the context of previous work, these results suggest that ns-DBDs (and thermal perturbations in general) are capable of increased control authority using a higher energy single pulses (e.g. Nd:YAG laser) or high frequency bursts (e.g. ns-DBD). These results also provide implications regarding the spatial distribution of heating, convective behavior of the heated gas and amplitude scaling of thermal perturbations for flow control.",
author = "Ashish Singh and Little, {Jesse C}",
year = "2016",
language = "English (US)",
isbn = "9781624103933",
booktitle = "54th AIAA Aerospace Sciences Meeting",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",

}

TY - GEN

T1 - Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator

AU - Singh, Ashish

AU - Little, Jesse C

PY - 2016

Y1 - 2016

N2 - The response of a low-speed turbulent mixing layer to perturbations from a pulsed Nd:YAG laser and an ns-DBD plasma actuator is examined experimentally. The objective of this work is to further clarify the mechanisms associated with flow control via thermal perturbations (energy deposition). The results are placed in context by contrasting them with previous work on the same facility using ac-DBD plasma actuators which function through electrohydrodynamic effects (i.e. momentum). The mixing layer is examined downstream in a region of maximum possible growth using total pressure measurements, PIV and hot wire anemometry where possible. The observed velocity fluctuations are compared between different actuation techniques. Attention is then shifted to the mixing layer origin (splitter plate trailing edge) to provide an understanding of the nature of the perturbations that result in downstream mixing layer growth. PIV and schlieren in this region show that the laser generates a discrete perturbation that propagates downstream resembling an impulse response. Single pulse ns-DBD forcing is absent any clear effect, but burst mode forcing produces fluctuations that suggest thermal excitation rather than momentum-based perturbations as observed in ac-DBDs. In the context of previous work, these results suggest that ns-DBDs (and thermal perturbations in general) are capable of increased control authority using a higher energy single pulses (e.g. Nd:YAG laser) or high frequency bursts (e.g. ns-DBD). These results also provide implications regarding the spatial distribution of heating, convective behavior of the heated gas and amplitude scaling of thermal perturbations for flow control.

AB - The response of a low-speed turbulent mixing layer to perturbations from a pulsed Nd:YAG laser and an ns-DBD plasma actuator is examined experimentally. The objective of this work is to further clarify the mechanisms associated with flow control via thermal perturbations (energy deposition). The results are placed in context by contrasting them with previous work on the same facility using ac-DBD plasma actuators which function through electrohydrodynamic effects (i.e. momentum). The mixing layer is examined downstream in a region of maximum possible growth using total pressure measurements, PIV and hot wire anemometry where possible. The observed velocity fluctuations are compared between different actuation techniques. Attention is then shifted to the mixing layer origin (splitter plate trailing edge) to provide an understanding of the nature of the perturbations that result in downstream mixing layer growth. PIV and schlieren in this region show that the laser generates a discrete perturbation that propagates downstream resembling an impulse response. Single pulse ns-DBD forcing is absent any clear effect, but burst mode forcing produces fluctuations that suggest thermal excitation rather than momentum-based perturbations as observed in ac-DBDs. In the context of previous work, these results suggest that ns-DBDs (and thermal perturbations in general) are capable of increased control authority using a higher energy single pulses (e.g. Nd:YAG laser) or high frequency bursts (e.g. ns-DBD). These results also provide implications regarding the spatial distribution of heating, convective behavior of the heated gas and amplitude scaling of thermal perturbations for flow control.

UR - http://www.scopus.com/inward/record.url?scp=85007530400&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85007530400&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:85007530400

SN - 9781624103933

BT - 54th AIAA Aerospace Sciences Meeting

PB - American Institute of Aeronautics and Astronautics Inc, AIAA

ER -