Adaptive compressive imaging via sequential parameter estimation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We describe a compressive imager that adapts the measurement basis based on past measurements within a sequential Bayesian estimation framework. Simulation study shows a 7% improvement in reconstruction performance compared to a static measurement basis.

Original languageEnglish (US)
Title of host publicationOptics InfoBase Conference Papers
StatePublished - 2011
EventComputational Optical Sensing and Imaging, COSI 2011 - Toronto, Canada
Duration: Jul 10 2011Jul 14 2011

Other

OtherComputational Optical Sensing and Imaging, COSI 2011
CountryCanada
CityToronto
Period7/10/117/14/11

Fingerprint

Parameter estimation
Imaging techniques
Image sensors
simulation

ASJC Scopus subject areas

  • Instrumentation
  • Atomic and Molecular Physics, and Optics

Cite this

Adaptive compressive imaging via sequential parameter estimation. / Ashok, Amit; Neifeld, Mark A.

Optics InfoBase Conference Papers. 2011.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ashok, A & Neifeld, MA 2011, Adaptive compressive imaging via sequential parameter estimation. in Optics InfoBase Conference Papers. Computational Optical Sensing and Imaging, COSI 2011, Toronto, Canada, 7/10/11.
@inproceedings{58e0646c2ea349cc9933b0d5b825c396,
title = "Adaptive compressive imaging via sequential parameter estimation",
abstract = "We describe a compressive imager that adapts the measurement basis based on past measurements within a sequential Bayesian estimation framework. Simulation study shows a 7{\%} improvement in reconstruction performance compared to a static measurement basis.",
author = "Amit Ashok and Neifeld, {Mark A}",
year = "2011",
language = "English (US)",
isbn = "9781557529145",
booktitle = "Optics InfoBase Conference Papers",

}

TY - GEN

T1 - Adaptive compressive imaging via sequential parameter estimation

AU - Ashok, Amit

AU - Neifeld, Mark A

PY - 2011

Y1 - 2011

N2 - We describe a compressive imager that adapts the measurement basis based on past measurements within a sequential Bayesian estimation framework. Simulation study shows a 7% improvement in reconstruction performance compared to a static measurement basis.

AB - We describe a compressive imager that adapts the measurement basis based on past measurements within a sequential Bayesian estimation framework. Simulation study shows a 7% improvement in reconstruction performance compared to a static measurement basis.

UR - http://www.scopus.com/inward/record.url?scp=84893579704&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893579704&partnerID=8YFLogxK

M3 - Conference contribution

SN - 9781557529145

BT - Optics InfoBase Conference Papers

ER -