Advances in the biological therapy and gene therapy of malignant disease

Research output: Contribution to journalArticle

30 Scopus citations

Abstract

Biological and gene therapy of cancer have become important components of clinical cancer research. Advances in this area are based on evidence for the presence of tumor antigens, antitumor immune responses, evasion of host control by tumors, and the recognition of host defense failure in cancer patients. These mechanisms are being corrected or exploited in the development of biological and gene therapy. Over the last decade, 9 biological therapies have received Food and Drug Administration approval, and another 12 appear promising and will likely be approved in the next few years. Our approach to gene therapy has been to allogenize tumors by the direct intratumoral injection of HLA-B7/β2-microglobulin genes as plasmid DNA in a cationic lipid into patients with malignant melanoma. In four Phase I studies, we found a 36% response by the local injected tumor and a 19% systemic antitumor response. In other cancers, gene transfer, expression, and an intratumoral T-cell response were seen, but no clinical response was seen. A variety of follow-up studies with HLA-B7 and other genes are planned. Evasion of host control is now a major target of gene therapy. Strategies to overcome this include up-regulation of MHC and introduction of cell adhesion molecules into tumor cells, suppression of transforming growth factor β and interleukin 10 production by tumor cells, and blockade of the fas ligand-fas interaction between tumor cells and attacking lymphocytes. With these approaches, it seems likely that gene therapy may become the fifth major modality of cancer treatment in the next decade.

Original languageEnglish (US)
Pages (from-to)2623-2629
Number of pages7
JournalClinical Cancer Research
Volume3
Issue number12 II
StatePublished - Dec 1 1997

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Advances in the biological therapy and gene therapy of malignant disease'. Together they form a unique fingerprint.

  • Cite this