AFSSI-C: The adaptive feature-specific spectral imaging classifier

M. J. Dunlop, P. A. Jansen, D. R. Golish, M. E. Gehm

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We have developed an architecture for spectral classification in spectral imaging. Adaptive kernels are designed using probabilistically-weighted principal component analysis. Simulation predicts orders-of-magnitude reduction in error rates, and a prototype system is currently under construction.

Original languageEnglish (US)
Title of host publicationComputational Optical Sensing and Imaging, COSI 2012
PublisherOptical Society of America (OSA)
PagesCM4B.4
ISBN (Print)1557529477, 9781557529473
DOIs
StatePublished - 2012
EventComputational Optical Sensing and Imaging, COSI 2012 - Monterey, CA, United States
Duration: Jun 24 2012Jun 28 2012

Publication series

NameComputational Optical Sensing and Imaging, COSI 2012

Other

OtherComputational Optical Sensing and Imaging, COSI 2012
CountryUnited States
CityMonterey, CA
Period6/24/126/28/12

ASJC Scopus subject areas

  • Computer Science(all)
  • Electrical and Electronic Engineering
  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'AFSSI-C: The adaptive feature-specific spectral imaging classifier'. Together they form a unique fingerprint.

  • Cite this

    Dunlop, M. J., Jansen, P. A., Golish, D. R., & Gehm, M. E. (2012). AFSSI-C: The adaptive feature-specific spectral imaging classifier. In Computational Optical Sensing and Imaging, COSI 2012 (pp. CM4B.4). (Computational Optical Sensing and Imaging, COSI 2012). Optical Society of America (OSA). https://doi.org/10.1364/cosi.2012.cm4b.4