Allatostatin-like-immunoreactive neurons of the tobacco Hornworm, Manduca sexta, and isolation and identification of a new neuropeptide related to cockroach allatostatins

N. T. Davis, J. A. Veenstra, R. Feyereisen, John G Hildebrand

Research output: Contribution to journalArticle

77 Citations (Scopus)

Abstract

The YXFGLamide C-terminus serves to define most members of a family of structurally related neuropeptides, the YXFGLamides. These peptides have been identified from the nervous system of various insects and include the allatostatins of cockroaches and crickets, the schistostatins of locusts, and the callatostatins of blowflies. The YXFGLamides have been shown to have various functions, including inhibition of juvenile hormone biosynthesis in cockroaches and crickets and inhibition of contraction of certain insect visceral muscles. We wanted to knew if these peptides occur in Manduca sexta and what functions they might have. A new peptide, AKSYNFGLamide, was isolated and identified from M. sexta and has been named 'lepidostatin-1'; this is the first YXFGLamide to be found in a lepidopteran, and there are indications that additional YXFGLamides occur in M. sexta. An antiserum to cockroach allatostatins (YXFGLamides) was shown to recognize lepidostatin-1 of M. sexta and was used to map YXFGLamide-immunoreactive neurons in larvae. Because immunoreactive interneurons were found to form an extensive neuropil, YXFGLamides probably function as neuromodulators in M. sexta. Neuroendocrine cells in the brain, abdominal ganglia, and their respective neurohemal organs were YXFGLamide immunereactive and appear to release YXFGLamides as neurohormones. Immunoreactivity to YXFGLamides and M. sexta diuretic hormone were found to be colocalized and appear to be coreleased in these neuroendocrine cells, indicating that YXFGLamides may be involved in regulation of fluid transport. Innervation of the corpora allata by YXFGLamide-immunoreactive processes was very sparse, suggesting that this innervation does not play an important role in allatostasis. Many thoracic motor neurons were YXFGLamide immunereactive, suggesting that YXFGLamides may have a myomodulatory or myotrophic function in larvae. However, this immunoreactivity disappeared early in metamorphosis and did not reappear in the adult. The YXFGLamide-immunoreactive neurons in the terminal abdominal ganglion were found to innervate the hindgut, indicating that YXFGLamides may be involved in the control of the rate of myogenic contractions of the larval hindgut.

Original languageEnglish (US)
Pages (from-to)265-284
Number of pages20
JournalJournal of Comparative Neurology
Volume385
Issue number2
DOIs
StatePublished - Aug 25 1997

Fingerprint

Manduca
Cockroaches
Neuropeptides
Neurons
Gryllidae
Neuroendocrine Cells
Ganglia
Peptides
Larva
Neurotransmitter Agents
Insects
Corpora Allata
Juvenile Hormones
Grasshoppers
Neuropil
Motor Neurons
Interneurons
Nervous System
Immune Sera
Thorax

Keywords

  • Diuretic hormone
  • FMRFamide
  • Immunocytochemistry
  • Insects
  • SCP(B)

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{73f209a701354b2996a49c542233fb91,
title = "Allatostatin-like-immunoreactive neurons of the tobacco Hornworm, Manduca sexta, and isolation and identification of a new neuropeptide related to cockroach allatostatins",
abstract = "The YXFGLamide C-terminus serves to define most members of a family of structurally related neuropeptides, the YXFGLamides. These peptides have been identified from the nervous system of various insects and include the allatostatins of cockroaches and crickets, the schistostatins of locusts, and the callatostatins of blowflies. The YXFGLamides have been shown to have various functions, including inhibition of juvenile hormone biosynthesis in cockroaches and crickets and inhibition of contraction of certain insect visceral muscles. We wanted to knew if these peptides occur in Manduca sexta and what functions they might have. A new peptide, AKSYNFGLamide, was isolated and identified from M. sexta and has been named 'lepidostatin-1'; this is the first YXFGLamide to be found in a lepidopteran, and there are indications that additional YXFGLamides occur in M. sexta. An antiserum to cockroach allatostatins (YXFGLamides) was shown to recognize lepidostatin-1 of M. sexta and was used to map YXFGLamide-immunoreactive neurons in larvae. Because immunoreactive interneurons were found to form an extensive neuropil, YXFGLamides probably function as neuromodulators in M. sexta. Neuroendocrine cells in the brain, abdominal ganglia, and their respective neurohemal organs were YXFGLamide immunereactive and appear to release YXFGLamides as neurohormones. Immunoreactivity to YXFGLamides and M. sexta diuretic hormone were found to be colocalized and appear to be coreleased in these neuroendocrine cells, indicating that YXFGLamides may be involved in regulation of fluid transport. Innervation of the corpora allata by YXFGLamide-immunoreactive processes was very sparse, suggesting that this innervation does not play an important role in allatostasis. Many thoracic motor neurons were YXFGLamide immunereactive, suggesting that YXFGLamides may have a myomodulatory or myotrophic function in larvae. However, this immunoreactivity disappeared early in metamorphosis and did not reappear in the adult. The YXFGLamide-immunoreactive neurons in the terminal abdominal ganglion were found to innervate the hindgut, indicating that YXFGLamides may be involved in the control of the rate of myogenic contractions of the larval hindgut.",
keywords = "Diuretic hormone, FMRFamide, Immunocytochemistry, Insects, SCP(B)",
author = "Davis, {N. T.} and Veenstra, {J. A.} and R. Feyereisen and Hildebrand, {John G}",
year = "1997",
month = "8",
day = "25",
doi = "10.1002/(SICI)1096-9861(19970825)385:2<265::AID-CNE6>3.0.CO;2-#",
language = "English (US)",
volume = "385",
pages = "265--284",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "2",

}

TY - JOUR

T1 - Allatostatin-like-immunoreactive neurons of the tobacco Hornworm, Manduca sexta, and isolation and identification of a new neuropeptide related to cockroach allatostatins

AU - Davis, N. T.

AU - Veenstra, J. A.

AU - Feyereisen, R.

AU - Hildebrand, John G

PY - 1997/8/25

Y1 - 1997/8/25

N2 - The YXFGLamide C-terminus serves to define most members of a family of structurally related neuropeptides, the YXFGLamides. These peptides have been identified from the nervous system of various insects and include the allatostatins of cockroaches and crickets, the schistostatins of locusts, and the callatostatins of blowflies. The YXFGLamides have been shown to have various functions, including inhibition of juvenile hormone biosynthesis in cockroaches and crickets and inhibition of contraction of certain insect visceral muscles. We wanted to knew if these peptides occur in Manduca sexta and what functions they might have. A new peptide, AKSYNFGLamide, was isolated and identified from M. sexta and has been named 'lepidostatin-1'; this is the first YXFGLamide to be found in a lepidopteran, and there are indications that additional YXFGLamides occur in M. sexta. An antiserum to cockroach allatostatins (YXFGLamides) was shown to recognize lepidostatin-1 of M. sexta and was used to map YXFGLamide-immunoreactive neurons in larvae. Because immunoreactive interneurons were found to form an extensive neuropil, YXFGLamides probably function as neuromodulators in M. sexta. Neuroendocrine cells in the brain, abdominal ganglia, and their respective neurohemal organs were YXFGLamide immunereactive and appear to release YXFGLamides as neurohormones. Immunoreactivity to YXFGLamides and M. sexta diuretic hormone were found to be colocalized and appear to be coreleased in these neuroendocrine cells, indicating that YXFGLamides may be involved in regulation of fluid transport. Innervation of the corpora allata by YXFGLamide-immunoreactive processes was very sparse, suggesting that this innervation does not play an important role in allatostasis. Many thoracic motor neurons were YXFGLamide immunereactive, suggesting that YXFGLamides may have a myomodulatory or myotrophic function in larvae. However, this immunoreactivity disappeared early in metamorphosis and did not reappear in the adult. The YXFGLamide-immunoreactive neurons in the terminal abdominal ganglion were found to innervate the hindgut, indicating that YXFGLamides may be involved in the control of the rate of myogenic contractions of the larval hindgut.

AB - The YXFGLamide C-terminus serves to define most members of a family of structurally related neuropeptides, the YXFGLamides. These peptides have been identified from the nervous system of various insects and include the allatostatins of cockroaches and crickets, the schistostatins of locusts, and the callatostatins of blowflies. The YXFGLamides have been shown to have various functions, including inhibition of juvenile hormone biosynthesis in cockroaches and crickets and inhibition of contraction of certain insect visceral muscles. We wanted to knew if these peptides occur in Manduca sexta and what functions they might have. A new peptide, AKSYNFGLamide, was isolated and identified from M. sexta and has been named 'lepidostatin-1'; this is the first YXFGLamide to be found in a lepidopteran, and there are indications that additional YXFGLamides occur in M. sexta. An antiserum to cockroach allatostatins (YXFGLamides) was shown to recognize lepidostatin-1 of M. sexta and was used to map YXFGLamide-immunoreactive neurons in larvae. Because immunoreactive interneurons were found to form an extensive neuropil, YXFGLamides probably function as neuromodulators in M. sexta. Neuroendocrine cells in the brain, abdominal ganglia, and their respective neurohemal organs were YXFGLamide immunereactive and appear to release YXFGLamides as neurohormones. Immunoreactivity to YXFGLamides and M. sexta diuretic hormone were found to be colocalized and appear to be coreleased in these neuroendocrine cells, indicating that YXFGLamides may be involved in regulation of fluid transport. Innervation of the corpora allata by YXFGLamide-immunoreactive processes was very sparse, suggesting that this innervation does not play an important role in allatostasis. Many thoracic motor neurons were YXFGLamide immunereactive, suggesting that YXFGLamides may have a myomodulatory or myotrophic function in larvae. However, this immunoreactivity disappeared early in metamorphosis and did not reappear in the adult. The YXFGLamide-immunoreactive neurons in the terminal abdominal ganglion were found to innervate the hindgut, indicating that YXFGLamides may be involved in the control of the rate of myogenic contractions of the larval hindgut.

KW - Diuretic hormone

KW - FMRFamide

KW - Immunocytochemistry

KW - Insects

KW - SCP(B)

UR - http://www.scopus.com/inward/record.url?scp=0030816771&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030816771&partnerID=8YFLogxK

U2 - 10.1002/(SICI)1096-9861(19970825)385:2<265::AID-CNE6>3.0.CO;2-#

DO - 10.1002/(SICI)1096-9861(19970825)385:2<265::AID-CNE6>3.0.CO;2-#

M3 - Article

VL - 385

SP - 265

EP - 284

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 2

ER -