Alpha-copi coatomer protein is required for rough endoplasmic reticulum Whorl formation in mosquito midgut epithelial cells

Guoli Zhou, Jun Isoe, W. Antony Day, Roger Miesfeld

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Background: One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation. Methodology/Principal Findings: Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta'), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked. Conclusions: alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases.

Original languageEnglish (US)
Article numbere18150
JournalPLoS One
Volume6
Issue number3
DOIs
StatePublished - 2011

Fingerprint

Coatomer Protein
Rough Endoplasmic Reticulum
rough endoplasmic reticulum
Culicidae
midgut
Coat Protein Complex I
epithelial cells
Epithelial Cells
Meals
blood meal
Aedes aegypti
Proteins
proteins
Blood
RNA Interference
Amino Acids
amino acids
electron microscopy
Electron Microscopy
Electron microscopy

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Alpha-copi coatomer protein is required for rough endoplasmic reticulum Whorl formation in mosquito midgut epithelial cells. / Zhou, Guoli; Isoe, Jun; Day, W. Antony; Miesfeld, Roger.

In: PLoS One, Vol. 6, No. 3, e18150, 2011.

Research output: Contribution to journalArticle

@article{ba64a7c55e3b443aa583def727b3bd77,
title = "Alpha-copi coatomer protein is required for rough endoplasmic reticulum Whorl formation in mosquito midgut epithelial cells",
abstract = "Background: One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation. Methodology/Principal Findings: Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta'), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked. Conclusions: alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases.",
author = "Guoli Zhou and Jun Isoe and Day, {W. Antony} and Roger Miesfeld",
year = "2011",
doi = "10.1371/journal.pone.0018150",
language = "English (US)",
volume = "6",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

TY - JOUR

T1 - Alpha-copi coatomer protein is required for rough endoplasmic reticulum Whorl formation in mosquito midgut epithelial cells

AU - Zhou, Guoli

AU - Isoe, Jun

AU - Day, W. Antony

AU - Miesfeld, Roger

PY - 2011

Y1 - 2011

N2 - Background: One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation. Methodology/Principal Findings: Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta'), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked. Conclusions: alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases.

AB - Background: One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation. Methodology/Principal Findings: Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta'), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked. Conclusions: alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases.

UR - http://www.scopus.com/inward/record.url?scp=79953328554&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953328554&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0018150

DO - 10.1371/journal.pone.0018150

M3 - Article

VL - 6

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 3

M1 - e18150

ER -