An in situ investigation on the origins and processing of circumstellar oxide and silicate grains in carbonaceous chondrites

Thomas J. Zega, Pierre Haenecour, Christine Floss

Research output: Contribution to journalArticle

Abstract

We report on the isotopic, chemical, and structural properties of four O-rich presolar grains identified in situ in the Adelaide ungrouped C2, LaPaZ Icefield (LAP) 031117 CO3.0, and Dominion Range (DOM) 08006 CO3.0 chondrites. All four grains have oxygen-isotopic compositions consistent with origins in the circumstellar envelopes (CSE) of low-mass O-rich stars evolved along the red-giant and asymptotic-giant branch (RGB, AGB, respectively) of stellar evolution. Transmission electron microscope (TEM) analyses, enabled by focused-ion-beam scanning electron microscope extraction, show that the grain from Adelaide is a single-crystal Mg-Al spinel, and comparison with equilibrium thermodynamic predictions constrains its condensation to 1500 K assuming a total pressure ≤10−3 atm in its host CSE. In comparison, TEM analysis of two grains identified in the LAP 031117 chondrite exhibits different microstructures. Grain LAP-81 is composed of olivine containing a Ca-rich and a Ca-poor domain, both of which show distinct orientations, suggesting changing thermodynamic conditions in the host CSE that cannot be precisely constrained. LAP-104 contains a polycrystalline assemblage of ferromagnesian silicates similar to previous reports of nanocrystalline presolar Fe-rich silicates that formed under nonequilibrium conditions. Lastly, TEM shows that the grain extracted from DOM 08006 is a polycrystalline assemblage of Cr-bearing spinel. The grains occur in different orientations, likely reflecting mechanical assembly in their host CSE. The O-isotopic and Cr-rich compositions appear to point toward nonequilibrium condensation. The spinel is surrounded by an isotopically solar pyroxene lacking long-range atomic order and could have served as a nucleation site for its condensation in the interstellar medium or the inner solar protoplanetary disk.

Original languageEnglish (US)
JournalMeteoritics and Planetary Science
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

carbonaceous chondrites
carbonaceous chondrite
silicates
silicate
oxide
spinel
condensation
electron
oxides
chondrite
envelopes
electron microscopes
thermodynamics
chondrites
pyroxene
nucleation
olivine
microstructure
isotopic composition
nonequilibrium conditions

ASJC Scopus subject areas

  • Geophysics
  • Space and Planetary Science

Cite this

@article{5530f2e6149d49e085c000dbf4e8d1c9,
title = "An in situ investigation on the origins and processing of circumstellar oxide and silicate grains in carbonaceous chondrites",
abstract = "We report on the isotopic, chemical, and structural properties of four O-rich presolar grains identified in situ in the Adelaide ungrouped C2, LaPaZ Icefield (LAP) 031117 CO3.0, and Dominion Range (DOM) 08006 CO3.0 chondrites. All four grains have oxygen-isotopic compositions consistent with origins in the circumstellar envelopes (CSE) of low-mass O-rich stars evolved along the red-giant and asymptotic-giant branch (RGB, AGB, respectively) of stellar evolution. Transmission electron microscope (TEM) analyses, enabled by focused-ion-beam scanning electron microscope extraction, show that the grain from Adelaide is a single-crystal Mg-Al spinel, and comparison with equilibrium thermodynamic predictions constrains its condensation to 1500 K assuming a total pressure ≤10−3 atm in its host CSE. In comparison, TEM analysis of two grains identified in the LAP 031117 chondrite exhibits different microstructures. Grain LAP-81 is composed of olivine containing a Ca-rich and a Ca-poor domain, both of which show distinct orientations, suggesting changing thermodynamic conditions in the host CSE that cannot be precisely constrained. LAP-104 contains a polycrystalline assemblage of ferromagnesian silicates similar to previous reports of nanocrystalline presolar Fe-rich silicates that formed under nonequilibrium conditions. Lastly, TEM shows that the grain extracted from DOM 08006 is a polycrystalline assemblage of Cr-bearing spinel. The grains occur in different orientations, likely reflecting mechanical assembly in their host CSE. The O-isotopic and Cr-rich compositions appear to point toward nonequilibrium condensation. The spinel is surrounded by an isotopically solar pyroxene lacking long-range atomic order and could have served as a nucleation site for its condensation in the interstellar medium or the inner solar protoplanetary disk.",
author = "Zega, {Thomas J.} and Pierre Haenecour and Christine Floss",
year = "2019",
month = "1",
day = "1",
doi = "10.1111/maps.13418",
language = "English (US)",
journal = "Meteoritics and Planetary Science",
issn = "1086-9379",
publisher = "The University of Arkansas Press",

}

TY - JOUR

T1 - An in situ investigation on the origins and processing of circumstellar oxide and silicate grains in carbonaceous chondrites

AU - Zega, Thomas J.

AU - Haenecour, Pierre

AU - Floss, Christine

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We report on the isotopic, chemical, and structural properties of four O-rich presolar grains identified in situ in the Adelaide ungrouped C2, LaPaZ Icefield (LAP) 031117 CO3.0, and Dominion Range (DOM) 08006 CO3.0 chondrites. All four grains have oxygen-isotopic compositions consistent with origins in the circumstellar envelopes (CSE) of low-mass O-rich stars evolved along the red-giant and asymptotic-giant branch (RGB, AGB, respectively) of stellar evolution. Transmission electron microscope (TEM) analyses, enabled by focused-ion-beam scanning electron microscope extraction, show that the grain from Adelaide is a single-crystal Mg-Al spinel, and comparison with equilibrium thermodynamic predictions constrains its condensation to 1500 K assuming a total pressure ≤10−3 atm in its host CSE. In comparison, TEM analysis of two grains identified in the LAP 031117 chondrite exhibits different microstructures. Grain LAP-81 is composed of olivine containing a Ca-rich and a Ca-poor domain, both of which show distinct orientations, suggesting changing thermodynamic conditions in the host CSE that cannot be precisely constrained. LAP-104 contains a polycrystalline assemblage of ferromagnesian silicates similar to previous reports of nanocrystalline presolar Fe-rich silicates that formed under nonequilibrium conditions. Lastly, TEM shows that the grain extracted from DOM 08006 is a polycrystalline assemblage of Cr-bearing spinel. The grains occur in different orientations, likely reflecting mechanical assembly in their host CSE. The O-isotopic and Cr-rich compositions appear to point toward nonequilibrium condensation. The spinel is surrounded by an isotopically solar pyroxene lacking long-range atomic order and could have served as a nucleation site for its condensation in the interstellar medium or the inner solar protoplanetary disk.

AB - We report on the isotopic, chemical, and structural properties of four O-rich presolar grains identified in situ in the Adelaide ungrouped C2, LaPaZ Icefield (LAP) 031117 CO3.0, and Dominion Range (DOM) 08006 CO3.0 chondrites. All four grains have oxygen-isotopic compositions consistent with origins in the circumstellar envelopes (CSE) of low-mass O-rich stars evolved along the red-giant and asymptotic-giant branch (RGB, AGB, respectively) of stellar evolution. Transmission electron microscope (TEM) analyses, enabled by focused-ion-beam scanning electron microscope extraction, show that the grain from Adelaide is a single-crystal Mg-Al spinel, and comparison with equilibrium thermodynamic predictions constrains its condensation to 1500 K assuming a total pressure ≤10−3 atm in its host CSE. In comparison, TEM analysis of two grains identified in the LAP 031117 chondrite exhibits different microstructures. Grain LAP-81 is composed of olivine containing a Ca-rich and a Ca-poor domain, both of which show distinct orientations, suggesting changing thermodynamic conditions in the host CSE that cannot be precisely constrained. LAP-104 contains a polycrystalline assemblage of ferromagnesian silicates similar to previous reports of nanocrystalline presolar Fe-rich silicates that formed under nonequilibrium conditions. Lastly, TEM shows that the grain extracted from DOM 08006 is a polycrystalline assemblage of Cr-bearing spinel. The grains occur in different orientations, likely reflecting mechanical assembly in their host CSE. The O-isotopic and Cr-rich compositions appear to point toward nonequilibrium condensation. The spinel is surrounded by an isotopically solar pyroxene lacking long-range atomic order and could have served as a nucleation site for its condensation in the interstellar medium or the inner solar protoplanetary disk.

UR - http://www.scopus.com/inward/record.url?scp=85074989607&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074989607&partnerID=8YFLogxK

U2 - 10.1111/maps.13418

DO - 10.1111/maps.13418

M3 - Article

AN - SCOPUS:85074989607

JO - Meteoritics and Planetary Science

JF - Meteoritics and Planetary Science

SN - 1086-9379

ER -