An inviscid analysis of swept oblique shock reflections

James A.S. Threadgill, Jesse C. Little

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

An inviscid flow model is presented to gain a basic understanding of the reflection of a swept oblique shock from a planar wall. The analytical model is constructed to describe the fundamental influence of sweep on this shock configuration, which has been commonly studied as an unswept non-dimensional shock boundary layer interaction (SBLI). Transformation of model parameters into a plane perpendicular to the sweep angle reduces the resultant flow to a two-parameter system. An equivalency between this configuration and others commonly assessed is presented with advisory notes on the definition of effective coordinate systems. Inviscid shock detachment has been associated with the onset of quasi-conical SBLI spanwise development; see (Settles & Teng, AIAA J., vol. 22 (2), 1984, pp. 194-200). Its occurrence for this SBLI configuration is determined for a range of conditions and compared to experimental observations of swept SBLIs claiming cylindrical/conical similarity scalings. Finally, influence of a zero-mass flux plane associated with typical experimental and numerical analyses is presented with an accompanying model for the shock structure. While this paper serves as a useful resource when designing swept impinging oblique SBLI studies, it also provides a vital benchmark for this complex configuration and helps to unify various SBLI configurations that are often analysed in isolation.

Original languageEnglish (US)
Article numberA22
JournalJournal of Fluid Mechanics
Volume890
DOIs
StatePublished - 2020

Keywords

  • high-speed flow
  • shock waves

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'An inviscid analysis of swept oblique shock reflections'. Together they form a unique fingerprint.

Cite this