An updatable holographic display for 3D visualization

Pierre Alexandre Blanche, Savas Tay, Ram Voorakaranam, Pierre Saint-Hilaire, Cory Christenson, Tao Gu, Weiping Lin, Donald Flores, Peng Wang, Michiharu Yamamoto, Jayan Thomas, Robert A. Norwood, Nasser Peyghambarian

Research output: Contribution to journalArticle

41 Scopus citations

Abstract

Among the various methods to produce three-dimensional (3D) images, holography occupies a special niche. Indeed, holograms provide highly realistic 3D images with a large viewing angle capability without the need for special eyewear. Such characteristics make them valuable tools for a wide range of applications such as medical, industrial, military, and entertainment imaging. To be suitable for an updatable holographic display, a material needs to have a high diffraction efficiency, fast writing time, hours of image persistence, capability for rapid erasure, and the potential for large display area - a combination of properties that has not been realized before. Currently, there exist several media for recording holograms like photopolymers, silver halide films or dichromated gelatin, to name a few. However, in all of these media, the image is permanently written and cannot be refreshed. There also exist dynamic 3D display systems based on acousto-optic materials, liquid-crystals or microelectromechanical systems (MEMS), however they rely on massive wavefront computations that limit their image size capability. Inorganic crystals for hologram recording such as photorefractive crystals are extremely difficult to grow to larger than a few cubic centimeters in volume.Photorefractive polymers are dynamic holographic recording materials that allow for updating of images. They have been investigated over the last decade and have a wide range of applications including optical correlation, imaging through scattering media, and optical communication. Here, we report the details of the achievement of the first updatable holographic 3D display based on photorefractive polymers. With a 4 × 4 in2 size, this is the largest photorefractive 3D display to date and is capable of recording and displaying new images every few minutes. The holograms can be viewed for several hours without the need for refreshing, and can be completely erased and updated whenever desired.

Original languageEnglish (US)
Article number4670331
Pages (from-to)424-430
Number of pages7
JournalIEEE/OSA Journal of Display Technology
Volume4
Issue number4
DOIs
StatePublished - Dec 1 2008

Keywords

  • Holography
  • Imaging
  • Photorefractive materials

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'An updatable holographic display for 3D visualization'. Together they form a unique fingerprint.

  • Cite this

    Blanche, P. A., Tay, S., Voorakaranam, R., Saint-Hilaire, P., Christenson, C., Gu, T., Lin, W., Flores, D., Wang, P., Yamamoto, M., Thomas, J., Norwood, R. A., & Peyghambarian, N. (2008). An updatable holographic display for 3D visualization. IEEE/OSA Journal of Display Technology, 4(4), 424-430. [4670331]. https://doi.org/10.1109/JDT.2008.2001574