Anatomical analysis of contacts between identified neurons that control heartbeat in the leech Hirudo medicinalis

Leslie P Tolbert, Ronald L. Calabrese

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The rhythmic constriction of the heart tubes in the leech Hirudo medicinalis is controlled by an identified set of motor neurons (HE cells) and interneurons (HN cells) (reviewed by Calabrese and Peterson 1983). Electrophysiological recordings have indicated particular synaptic relationships among HE and HN cells. In the present study, the synaptic framework mediating the interactions among HE cells and HN cells was examined anatomically. Using light and electron microscopy of physiologically identified, HRP-injected cells, we have examined the zones of interaction and types of contacts between specific cells. HE cells, which have very fine, threadlike processes, interact with their contralateral homologues throughout most of the middle third of the ganglionic neuropil. When HE-cell neuntes come together, the apposed plasma membranes are rigidly parallel, separated by an intercellular gap of 6 nm, for up to 6 μm. These specializations must form the structural basis for the strong electrical coupling observed (Peterson 1983) between HE-cell pairs. HE cells also emit from the main neurite a series of extremely fine processes that extend dorsally. These appear in the light microscope to contact processes of the ipsilateral HN cell of the same ganglion, and are also in a position to make contact with the axons of more anterior HN cells. The intraganglionic processes of HN cells, which are studded with large varicosities, ramify in part of the region of neuropil occupied by HE-cell processes, as well as more posteriorly. Contacts between HE and HN cells, which are known to be mostly inhibitory synaptic contacts, are seen in the electron microscope to be formed between medium-diameter HN processes, which are filled with clear round synaptic vesicles, and multiple fine tendrils of the HE cell that surround the HN process. Certain HN cells form reciprocal inhibitory synapses with their contralateral homologues. These contacts occur near the midline, sometimes in the major mass of neuropil and sometimes embedded in the extracellular material that ensheathes the neuropil. The contacts are between medium-and small-diameter profiles that are both filled with synaptic vesicles. Our findings indicate that various classes of physiological interactions among HE and HN cells are mediated by anatomically distinct types of contacts and, at least in some cases, are segregated from each other on the neuritic trees of the cells.

Original languageEnglish (US)
Pages (from-to)257-267
Number of pages11
JournalCell & Tissue Research
Volume242
Issue number2
DOIs
StatePublished - Nov 1985
Externally publishedYes

Fingerprint

Hirudo medicinalis
Leeches
Cell membranes
Electron microscopy
Neurons
Optical microscopy
Microscopes
Electron microscopes
Neuropil
Axons
Synaptic Vesicles

Keywords

  • Cardiac interneurons
  • Cardiac motor neurons
  • Hirudo medicinalis
  • Identified neurons
  • Synaptic connections
  • Ultrastructure of synapses

ASJC Scopus subject areas

  • Anatomy
  • Clinical Biochemistry
  • Cell Biology

Cite this

Anatomical analysis of contacts between identified neurons that control heartbeat in the leech Hirudo medicinalis. / Tolbert, Leslie P; Calabrese, Ronald L.

In: Cell & Tissue Research, Vol. 242, No. 2, 11.1985, p. 257-267.

Research output: Contribution to journalArticle

@article{7478ba23050b4483acd14a71f5f2d582,
title = "Anatomical analysis of contacts between identified neurons that control heartbeat in the leech Hirudo medicinalis",
abstract = "The rhythmic constriction of the heart tubes in the leech Hirudo medicinalis is controlled by an identified set of motor neurons (HE cells) and interneurons (HN cells) (reviewed by Calabrese and Peterson 1983). Electrophysiological recordings have indicated particular synaptic relationships among HE and HN cells. In the present study, the synaptic framework mediating the interactions among HE cells and HN cells was examined anatomically. Using light and electron microscopy of physiologically identified, HRP-injected cells, we have examined the zones of interaction and types of contacts between specific cells. HE cells, which have very fine, threadlike processes, interact with their contralateral homologues throughout most of the middle third of the ganglionic neuropil. When HE-cell neuntes come together, the apposed plasma membranes are rigidly parallel, separated by an intercellular gap of 6 nm, for up to 6 μm. These specializations must form the structural basis for the strong electrical coupling observed (Peterson 1983) between HE-cell pairs. HE cells also emit from the main neurite a series of extremely fine processes that extend dorsally. These appear in the light microscope to contact processes of the ipsilateral HN cell of the same ganglion, and are also in a position to make contact with the axons of more anterior HN cells. The intraganglionic processes of HN cells, which are studded with large varicosities, ramify in part of the region of neuropil occupied by HE-cell processes, as well as more posteriorly. Contacts between HE and HN cells, which are known to be mostly inhibitory synaptic contacts, are seen in the electron microscope to be formed between medium-diameter HN processes, which are filled with clear round synaptic vesicles, and multiple fine tendrils of the HE cell that surround the HN process. Certain HN cells form reciprocal inhibitory synapses with their contralateral homologues. These contacts occur near the midline, sometimes in the major mass of neuropil and sometimes embedded in the extracellular material that ensheathes the neuropil. The contacts are between medium-and small-diameter profiles that are both filled with synaptic vesicles. Our findings indicate that various classes of physiological interactions among HE and HN cells are mediated by anatomically distinct types of contacts and, at least in some cases, are segregated from each other on the neuritic trees of the cells.",
keywords = "Cardiac interneurons, Cardiac motor neurons, Hirudo medicinalis, Identified neurons, Synaptic connections, Ultrastructure of synapses",
author = "Tolbert, {Leslie P} and Calabrese, {Ronald L.}",
year = "1985",
month = "11",
doi = "10.1007/BF00214538",
language = "English (US)",
volume = "242",
pages = "257--267",
journal = "Cell and Tissue Research",
issn = "0302-766X",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - Anatomical analysis of contacts between identified neurons that control heartbeat in the leech Hirudo medicinalis

AU - Tolbert, Leslie P

AU - Calabrese, Ronald L.

PY - 1985/11

Y1 - 1985/11

N2 - The rhythmic constriction of the heart tubes in the leech Hirudo medicinalis is controlled by an identified set of motor neurons (HE cells) and interneurons (HN cells) (reviewed by Calabrese and Peterson 1983). Electrophysiological recordings have indicated particular synaptic relationships among HE and HN cells. In the present study, the synaptic framework mediating the interactions among HE cells and HN cells was examined anatomically. Using light and electron microscopy of physiologically identified, HRP-injected cells, we have examined the zones of interaction and types of contacts between specific cells. HE cells, which have very fine, threadlike processes, interact with their contralateral homologues throughout most of the middle third of the ganglionic neuropil. When HE-cell neuntes come together, the apposed plasma membranes are rigidly parallel, separated by an intercellular gap of 6 nm, for up to 6 μm. These specializations must form the structural basis for the strong electrical coupling observed (Peterson 1983) between HE-cell pairs. HE cells also emit from the main neurite a series of extremely fine processes that extend dorsally. These appear in the light microscope to contact processes of the ipsilateral HN cell of the same ganglion, and are also in a position to make contact with the axons of more anterior HN cells. The intraganglionic processes of HN cells, which are studded with large varicosities, ramify in part of the region of neuropil occupied by HE-cell processes, as well as more posteriorly. Contacts between HE and HN cells, which are known to be mostly inhibitory synaptic contacts, are seen in the electron microscope to be formed between medium-diameter HN processes, which are filled with clear round synaptic vesicles, and multiple fine tendrils of the HE cell that surround the HN process. Certain HN cells form reciprocal inhibitory synapses with their contralateral homologues. These contacts occur near the midline, sometimes in the major mass of neuropil and sometimes embedded in the extracellular material that ensheathes the neuropil. The contacts are between medium-and small-diameter profiles that are both filled with synaptic vesicles. Our findings indicate that various classes of physiological interactions among HE and HN cells are mediated by anatomically distinct types of contacts and, at least in some cases, are segregated from each other on the neuritic trees of the cells.

AB - The rhythmic constriction of the heart tubes in the leech Hirudo medicinalis is controlled by an identified set of motor neurons (HE cells) and interneurons (HN cells) (reviewed by Calabrese and Peterson 1983). Electrophysiological recordings have indicated particular synaptic relationships among HE and HN cells. In the present study, the synaptic framework mediating the interactions among HE cells and HN cells was examined anatomically. Using light and electron microscopy of physiologically identified, HRP-injected cells, we have examined the zones of interaction and types of contacts between specific cells. HE cells, which have very fine, threadlike processes, interact with their contralateral homologues throughout most of the middle third of the ganglionic neuropil. When HE-cell neuntes come together, the apposed plasma membranes are rigidly parallel, separated by an intercellular gap of 6 nm, for up to 6 μm. These specializations must form the structural basis for the strong electrical coupling observed (Peterson 1983) between HE-cell pairs. HE cells also emit from the main neurite a series of extremely fine processes that extend dorsally. These appear in the light microscope to contact processes of the ipsilateral HN cell of the same ganglion, and are also in a position to make contact with the axons of more anterior HN cells. The intraganglionic processes of HN cells, which are studded with large varicosities, ramify in part of the region of neuropil occupied by HE-cell processes, as well as more posteriorly. Contacts between HE and HN cells, which are known to be mostly inhibitory synaptic contacts, are seen in the electron microscope to be formed between medium-diameter HN processes, which are filled with clear round synaptic vesicles, and multiple fine tendrils of the HE cell that surround the HN process. Certain HN cells form reciprocal inhibitory synapses with their contralateral homologues. These contacts occur near the midline, sometimes in the major mass of neuropil and sometimes embedded in the extracellular material that ensheathes the neuropil. The contacts are between medium-and small-diameter profiles that are both filled with synaptic vesicles. Our findings indicate that various classes of physiological interactions among HE and HN cells are mediated by anatomically distinct types of contacts and, at least in some cases, are segregated from each other on the neuritic trees of the cells.

KW - Cardiac interneurons

KW - Cardiac motor neurons

KW - Hirudo medicinalis

KW - Identified neurons

KW - Synaptic connections

KW - Ultrastructure of synapses

UR - http://www.scopus.com/inward/record.url?scp=0022182424&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022182424&partnerID=8YFLogxK

U2 - 10.1007/BF00214538

DO - 10.1007/BF00214538

M3 - Article

AN - SCOPUS:0022182424

VL - 242

SP - 257

EP - 267

JO - Cell and Tissue Research

JF - Cell and Tissue Research

SN - 0302-766X

IS - 2

ER -