Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms

Vittorio Di Federico, Shlomo P Neuman, Daniel M. Tartakovsky

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

It has been shown by Di Federico and Neuman [1997, 1998a, b] that observed multiscale behaviors of subsurface fluid flow and transport variables can be explained within the context of a unified stochastic framework, which views hydraulic conductivity as a random fractal characterized by a power variogram. Such a random field is statistically nonhomogeneous but possesses homogeneous spatial increments. Di Federico and Neuman [1997] have demonstrated that the power variogram and associated spectra of a statistically isotropic fractal field can be constructed as a weighted integral from zero to infinity (an infinite hierarchy) of exponential or Gaussian variograms and spectra of mutually uncorrelated fields (modes) that are homogeneous and isotropic. We show in this paper that the same holds true when the field and its constituent modes are statistically anisotropic, provided the ratios between principal integral (spatial correlation) scales are the same for all modes. We then analyze the effect of filtering out (truncating) modes of low, high, and intermediate spatial frequency from this infinite hierarchy in the real and spectral domains. A low-frequency cutoff renders the truncated hierarchy homogeneous. The integral scales of the lowest- and highest-frequency cutoff modes are related to length scales of the sampling window (domain) and data support (sample volume), respectively. Taking the former to be proportional to the latter renders expressions for the integral scale and variance of the truncated field dependent on window and support scale (in a manner previously shown to be consistent with observations in the isotropic case). It also allows (in principle) bridging across scales at a specific locale, as well as among locales, by adopting either site-specific or generalized variogram parameters. The introduction of intermediate cutoffs allows us to account, in a straightforward manner, for lacunarity due to gaps in the multiscale hierarchy created by the absence of modes associated with discrete ranges of scales (for example, where textural and structural features are associated with distinct ranges of scale, such as fractures having discrete ranges of trace length and density, which dissect the rock into matrix blocks having corresponding ranges of sizes). We explore mathematically and graphically the effects that anisotropy and lacunarity have on the integral scale, variance, covariance, and spectra of a truncated fractal field. We then develop an expression for the equivalent hydraulic conductivity of a box-shaped porous block, embedded within a multiscale log hydraulic conductivity field, under mean-uniform flow. The block is larger than the support scale of the field but is smaller than a surrounding sampling window. Consequently, its equivalent hydraulic conductivity is a random variable whose variance and spatial autocorrelation function, conditioned on a known mean value of support-scale conductivity across the window, are given explicitly by our multiscale theory.

Original languageEnglish (US)
Pages (from-to)2891-2908
Number of pages18
JournalWater Resources Research
Volume35
Issue number10
DOIs
StatePublished - 1999

Fingerprint

Hydraulic conductivity
variogram
hydraulic conductivity
Anisotropy
anisotropy
conductivity
Fractals
Cutoff frequency
Sampling
sampling
subsurface flow
Autocorrelation
Random variables
autocorrelation
fluid flow
Flow of fluids
Rocks
matrix
rock
rocks

ASJC Scopus subject areas

  • Aquatic Science
  • Environmental Science(all)
  • Environmental Chemistry
  • Water Science and Technology

Cite this

Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms. / Di Federico, Vittorio; Neuman, Shlomo P; Tartakovsky, Daniel M.

In: Water Resources Research, Vol. 35, No. 10, 1999, p. 2891-2908.

Research output: Contribution to journalArticle

@article{49d80ca6920c4c7fad1ba7fbc60e1b01,
title = "Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms",
abstract = "It has been shown by Di Federico and Neuman [1997, 1998a, b] that observed multiscale behaviors of subsurface fluid flow and transport variables can be explained within the context of a unified stochastic framework, which views hydraulic conductivity as a random fractal characterized by a power variogram. Such a random field is statistically nonhomogeneous but possesses homogeneous spatial increments. Di Federico and Neuman [1997] have demonstrated that the power variogram and associated spectra of a statistically isotropic fractal field can be constructed as a weighted integral from zero to infinity (an infinite hierarchy) of exponential or Gaussian variograms and spectra of mutually uncorrelated fields (modes) that are homogeneous and isotropic. We show in this paper that the same holds true when the field and its constituent modes are statistically anisotropic, provided the ratios between principal integral (spatial correlation) scales are the same for all modes. We then analyze the effect of filtering out (truncating) modes of low, high, and intermediate spatial frequency from this infinite hierarchy in the real and spectral domains. A low-frequency cutoff renders the truncated hierarchy homogeneous. The integral scales of the lowest- and highest-frequency cutoff modes are related to length scales of the sampling window (domain) and data support (sample volume), respectively. Taking the former to be proportional to the latter renders expressions for the integral scale and variance of the truncated field dependent on window and support scale (in a manner previously shown to be consistent with observations in the isotropic case). It also allows (in principle) bridging across scales at a specific locale, as well as among locales, by adopting either site-specific or generalized variogram parameters. The introduction of intermediate cutoffs allows us to account, in a straightforward manner, for lacunarity due to gaps in the multiscale hierarchy created by the absence of modes associated with discrete ranges of scales (for example, where textural and structural features are associated with distinct ranges of scale, such as fractures having discrete ranges of trace length and density, which dissect the rock into matrix blocks having corresponding ranges of sizes). We explore mathematically and graphically the effects that anisotropy and lacunarity have on the integral scale, variance, covariance, and spectra of a truncated fractal field. We then develop an expression for the equivalent hydraulic conductivity of a box-shaped porous block, embedded within a multiscale log hydraulic conductivity field, under mean-uniform flow. The block is larger than the support scale of the field but is smaller than a surrounding sampling window. Consequently, its equivalent hydraulic conductivity is a random variable whose variance and spatial autocorrelation function, conditioned on a known mean value of support-scale conductivity across the window, are given explicitly by our multiscale theory.",
author = "{Di Federico}, Vittorio and Neuman, {Shlomo P} and Tartakovsky, {Daniel M.}",
year = "1999",
doi = "10.1029/1999WR900158",
language = "English (US)",
volume = "35",
pages = "2891--2908",
journal = "Water Resources Research",
issn = "0043-1397",
publisher = "American Geophysical Union",
number = "10",

}

TY - JOUR

T1 - Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms

AU - Di Federico, Vittorio

AU - Neuman, Shlomo P

AU - Tartakovsky, Daniel M.

PY - 1999

Y1 - 1999

N2 - It has been shown by Di Federico and Neuman [1997, 1998a, b] that observed multiscale behaviors of subsurface fluid flow and transport variables can be explained within the context of a unified stochastic framework, which views hydraulic conductivity as a random fractal characterized by a power variogram. Such a random field is statistically nonhomogeneous but possesses homogeneous spatial increments. Di Federico and Neuman [1997] have demonstrated that the power variogram and associated spectra of a statistically isotropic fractal field can be constructed as a weighted integral from zero to infinity (an infinite hierarchy) of exponential or Gaussian variograms and spectra of mutually uncorrelated fields (modes) that are homogeneous and isotropic. We show in this paper that the same holds true when the field and its constituent modes are statistically anisotropic, provided the ratios between principal integral (spatial correlation) scales are the same for all modes. We then analyze the effect of filtering out (truncating) modes of low, high, and intermediate spatial frequency from this infinite hierarchy in the real and spectral domains. A low-frequency cutoff renders the truncated hierarchy homogeneous. The integral scales of the lowest- and highest-frequency cutoff modes are related to length scales of the sampling window (domain) and data support (sample volume), respectively. Taking the former to be proportional to the latter renders expressions for the integral scale and variance of the truncated field dependent on window and support scale (in a manner previously shown to be consistent with observations in the isotropic case). It also allows (in principle) bridging across scales at a specific locale, as well as among locales, by adopting either site-specific or generalized variogram parameters. The introduction of intermediate cutoffs allows us to account, in a straightforward manner, for lacunarity due to gaps in the multiscale hierarchy created by the absence of modes associated with discrete ranges of scales (for example, where textural and structural features are associated with distinct ranges of scale, such as fractures having discrete ranges of trace length and density, which dissect the rock into matrix blocks having corresponding ranges of sizes). We explore mathematically and graphically the effects that anisotropy and lacunarity have on the integral scale, variance, covariance, and spectra of a truncated fractal field. We then develop an expression for the equivalent hydraulic conductivity of a box-shaped porous block, embedded within a multiscale log hydraulic conductivity field, under mean-uniform flow. The block is larger than the support scale of the field but is smaller than a surrounding sampling window. Consequently, its equivalent hydraulic conductivity is a random variable whose variance and spatial autocorrelation function, conditioned on a known mean value of support-scale conductivity across the window, are given explicitly by our multiscale theory.

AB - It has been shown by Di Federico and Neuman [1997, 1998a, b] that observed multiscale behaviors of subsurface fluid flow and transport variables can be explained within the context of a unified stochastic framework, which views hydraulic conductivity as a random fractal characterized by a power variogram. Such a random field is statistically nonhomogeneous but possesses homogeneous spatial increments. Di Federico and Neuman [1997] have demonstrated that the power variogram and associated spectra of a statistically isotropic fractal field can be constructed as a weighted integral from zero to infinity (an infinite hierarchy) of exponential or Gaussian variograms and spectra of mutually uncorrelated fields (modes) that are homogeneous and isotropic. We show in this paper that the same holds true when the field and its constituent modes are statistically anisotropic, provided the ratios between principal integral (spatial correlation) scales are the same for all modes. We then analyze the effect of filtering out (truncating) modes of low, high, and intermediate spatial frequency from this infinite hierarchy in the real and spectral domains. A low-frequency cutoff renders the truncated hierarchy homogeneous. The integral scales of the lowest- and highest-frequency cutoff modes are related to length scales of the sampling window (domain) and data support (sample volume), respectively. Taking the former to be proportional to the latter renders expressions for the integral scale and variance of the truncated field dependent on window and support scale (in a manner previously shown to be consistent with observations in the isotropic case). It also allows (in principle) bridging across scales at a specific locale, as well as among locales, by adopting either site-specific or generalized variogram parameters. The introduction of intermediate cutoffs allows us to account, in a straightforward manner, for lacunarity due to gaps in the multiscale hierarchy created by the absence of modes associated with discrete ranges of scales (for example, where textural and structural features are associated with distinct ranges of scale, such as fractures having discrete ranges of trace length and density, which dissect the rock into matrix blocks having corresponding ranges of sizes). We explore mathematically and graphically the effects that anisotropy and lacunarity have on the integral scale, variance, covariance, and spectra of a truncated fractal field. We then develop an expression for the equivalent hydraulic conductivity of a box-shaped porous block, embedded within a multiscale log hydraulic conductivity field, under mean-uniform flow. The block is larger than the support scale of the field but is smaller than a surrounding sampling window. Consequently, its equivalent hydraulic conductivity is a random variable whose variance and spatial autocorrelation function, conditioned on a known mean value of support-scale conductivity across the window, are given explicitly by our multiscale theory.

UR - http://www.scopus.com/inward/record.url?scp=0032872030&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032872030&partnerID=8YFLogxK

U2 - 10.1029/1999WR900158

DO - 10.1029/1999WR900158

M3 - Article

AN - SCOPUS:0032872030

VL - 35

SP - 2891

EP - 2908

JO - Water Resources Research

JF - Water Resources Research

SN - 0043-1397

IS - 10

ER -