Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early earth

Matthew A. Pasek, Dante Lauretta

Research output: Contribution to journalArticle

105 Citations (Scopus)

Abstract

We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO3, the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

Original languageEnglish (US)
Pages (from-to)515-535
Number of pages21
JournalAstrobiology
Volume5
Issue number4
DOIs
StatePublished - Aug 2005

Fingerprint

phosphides
Meteoroids
iron meteorites
Prebiotics
iron meteorite
early Earth
Corrosion
corrosion
prebiotics
Organophosphonates
phosphonates
Phosphorus
Minerals
phosphorus
Iron
minerals
iron
Water
mineral
acetic acid

Keywords

  • Extraterrestrial delivery of organics
  • Metal catalysis
  • Meteorites
  • Phosphorus
  • Schreibersite

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Cite this

@article{42462c5aca33407493c58ff03fabfff9,
title = "Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early earth",
abstract = "We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO3, the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.",
keywords = "Extraterrestrial delivery of organics, Metal catalysis, Meteorites, Phosphorus, Schreibersite",
author = "Pasek, {Matthew A.} and Dante Lauretta",
year = "2005",
month = "8",
doi = "10.1089/ast.2005.5.515",
language = "English (US)",
volume = "5",
pages = "515--535",
journal = "Astrobiology",
issn = "1531-1074",
publisher = "Mary Ann Liebert Inc.",
number = "4",

}

TY - JOUR

T1 - Aqueous corrosion of phosphide minerals from iron meteorites

T2 - A highly reactive source of prebiotic phosphorus on the surface of the early earth

AU - Pasek, Matthew A.

AU - Lauretta, Dante

PY - 2005/8

Y1 - 2005/8

N2 - We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO3, the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

AB - We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO3, the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

KW - Extraterrestrial delivery of organics

KW - Metal catalysis

KW - Meteorites

KW - Phosphorus

KW - Schreibersite

UR - http://www.scopus.com/inward/record.url?scp=24344451589&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=24344451589&partnerID=8YFLogxK

U2 - 10.1089/ast.2005.5.515

DO - 10.1089/ast.2005.5.515

M3 - Article

C2 - 16078869

AN - SCOPUS:24344451589

VL - 5

SP - 515

EP - 535

JO - Astrobiology

JF - Astrobiology

SN - 1531-1074

IS - 4

ER -