Archeops: A high resolution, large sky coverage balloon experiment for mapping cosmic microwave background anisotropies

A. Benot, P. Ade, A. Amblard, R. Ansari, E. Aubourg, J. Bartlett, J. P. Bernard, R. S. Bhatia, A. Blanchard, J. J. Bock, A. Boscaleri, F. R. Bouchet, A. Bourrachot, P. Camus, F. Couchot, P. De Bernardis, J. Delabrouille, F. X. Désert, O. Doré, M. DouspisL. Dumoulin, X. Dupac, P. Filliatre, K. Ganga, F. Gannaway, B. Gautier, M. Giard, Y. Giraud-Héraud, R. Gispert, L. Guglielmi, J. C. Hamilton, S. Hanany, S. Henrot-Versillé, V. V. Hristov, J. Kaplan, G. Lagache, J. M. Lamarre, A. E. Lange, K. Madet, B. Maffei, D. Marrone, S. Masi, J. A. Murphy, F. Naraghi, F. Nati, G. Perrin, M. Piat, J. L. Puget, D. Santos, R. V. Sudiwala, J. C. Vanel, D. Vibert, E. Wakui, D. Yvon

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Archeops is a balloon-borne instrument dedicated to measuring cosmic microwave background (CMB) temperature anisotropies at high angular resolution (∼8′) over a large fraction (∼25%) of the sky in the millimetre domain. Based on Planck high frequency instrument technology, cooled bolometers (0.1 K) scan the sky in total power mode with large circles at constant elevation. During the course of a 24-h Arctic-night balloon flight, Archeops will observe a complete annulus on the sky in four frequency bands centered at 143, 217, 353 and 545 GHz with an expected sensitivity to CMB fluctuations of ∼100 μK for each of the 90 thousand 20′ average pixels. We describe the instrument and its performance obtained during a test flight from Trapani (Sicily) to Spain in July 1999.

Original languageEnglish (US)
Pages (from-to)101-124
Number of pages24
JournalAstroparticle Physics
Volume17
Issue number2
DOIs
StatePublished - 2002
Externally publishedYes

ASJC Scopus subject areas

  • Astronomy and Astrophysics

Fingerprint

Dive into the research topics of 'Archeops: A high resolution, large sky coverage balloon experiment for mapping cosmic microwave background anisotropies'. Together they form a unique fingerprint.

Cite this