Area per lipid and cholesterol interactions in membranes from separated local-field 13C NMR spectroscopy

Avigdor Leftin, Trivikram R. Molugu, Constantin Job, Klaus Beyer, Michael F. Brown

Research output: Contribution to journalArticle

40 Scopus citations

Abstract

Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state 13C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved 13C-1H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the 13C-1H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state 13C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.

Original languageEnglish (US)
Pages (from-to)2274-2286
Number of pages13
JournalBiophysical Journal
Volume107
Issue number10
DOIs
StatePublished - Nov 18 2014

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Area per lipid and cholesterol interactions in membranes from separated local-field <sup>13</sup>C NMR spectroscopy'. Together they form a unique fingerprint.

  • Cite this