Arsenic‑induced BRCA1 CpG promoter methylation is associated with the downregulation of ERα and resistance to tamoxifen in MCF7 breast cancer cells and mouse mammary tumor xenografts

Ornella Selmin, Micah G. Donovan, Bethany Skovan, Gillian D. Paine-Murieta, Donato Romagnolo

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

A significant percentage (~30%) of estrogen receptor-α (ERα)-positive tumors become refractory to endocrine therapies; however, the mechanisms responsible for this resistance remain largely unknown. Chronic exposure to arsenic through foods and contaminated water has been linked to an increased incidence of several tumors and long-term health complications. Preclinical and population studies have indicated that arsenic exposure may interfere with endocrine regulation and increase the risk of breast tumorigenesis. In this study, we examined the effects of sodium arsenite (NaAsIII) exposure in ERα-positive breast cancer cells in vitro and in mammary tumor xenografts. The results revealed that acute (within 4 days) and long-term (10 days to 7 weeks) in vitro exposure to environmentally relevant doses reduced breast cancer 1 (BRCA1) and ERα expression associated with the gain of cyclin D1 (CCND1) and folate receptor 1 (FOLR1), and the loss of methylenetetrahydrofolate reductase (MTHFR) expression. Furthermore, long-term exposure to NaAsIIIinduced the proliferation and compromised the response of MCF7 cells to tamoxifen (TAM). The in vitro exposure to NaAsIII induced BRCA1 CpG methylation associated with the increased recruitment of DNA methyltransferase 1 (DNMT1) and the loss of RNA polymerase II (PolII) at the BRCA1 gene. Xenografts of NaAsIII-preconditioned MCF7 cells (MCF7NaAsIII) into the mammary fat pads of nude mice produced a larger tumor volume compared to tumors from control MCF7 cells and were more refractory to TAM in association with the reduced expression of BRCA1 and ERα, CpG hypermethylation of estrogen receptor 1 (ESR1) and BRCA1, and the increased expression of FOLR1. These cumulative data support the hypothesis that exposure to AsIII may contribute to reducing the efficacy of endocrine therapy against ERα-positive breast tumors by hampering the expression of ERα and BRCA1 via CpG methylation, respectively of ESR1 and BRCA1.

Original languageEnglish (US)
Pages (from-to)869-878
Number of pages10
JournalInternational Journal of Oncology
Volume54
Issue number3
DOIs
StatePublished - Mar 1 2019

Fingerprint

Tamoxifen
Heterografts
Estrogen Receptors
Methylation
Down-Regulation
Breast Neoplasms
Folate Receptor 1
MCF-7 Cells
Estrogen Receptor alpha
Arsenic
Breast
Methylenetetrahydrofolate Reductase (NADPH2)
Neoplasms
RNA Polymerase II
Neoplasm Genes
Cyclin D1
Methyltransferases
Tumor Burden
Nude Mice
Adipose Tissue

Keywords

  • Arsenic
  • BRCA1
  • Breast cancer
  • Epigenetics
  • Estrogen receptor
  • Tamoxifen

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

@article{02a83e12847f4494b9dbacd4a44442df,
title = "Arsenic‑induced BRCA1 CpG promoter methylation is associated with the downregulation of ERα and resistance to tamoxifen in MCF7 breast cancer cells and mouse mammary tumor xenografts",
abstract = "A significant percentage (~30{\%}) of estrogen receptor-α (ERα)-positive tumors become refractory to endocrine therapies; however, the mechanisms responsible for this resistance remain largely unknown. Chronic exposure to arsenic through foods and contaminated water has been linked to an increased incidence of several tumors and long-term health complications. Preclinical and population studies have indicated that arsenic exposure may interfere with endocrine regulation and increase the risk of breast tumorigenesis. In this study, we examined the effects of sodium arsenite (NaAsIII) exposure in ERα-positive breast cancer cells in vitro and in mammary tumor xenografts. The results revealed that acute (within 4 days) and long-term (10 days to 7 weeks) in vitro exposure to environmentally relevant doses reduced breast cancer 1 (BRCA1) and ERα expression associated with the gain of cyclin D1 (CCND1) and folate receptor 1 (FOLR1), and the loss of methylenetetrahydrofolate reductase (MTHFR) expression. Furthermore, long-term exposure to NaAsIIIinduced the proliferation and compromised the response of MCF7 cells to tamoxifen (TAM). The in vitro exposure to NaAsIII induced BRCA1 CpG methylation associated with the increased recruitment of DNA methyltransferase 1 (DNMT1) and the loss of RNA polymerase II (PolII) at the BRCA1 gene. Xenografts of NaAsIII-preconditioned MCF7 cells (MCF7NaAsIII) into the mammary fat pads of nude mice produced a larger tumor volume compared to tumors from control MCF7 cells and were more refractory to TAM in association with the reduced expression of BRCA1 and ERα, CpG hypermethylation of estrogen receptor 1 (ESR1) and BRCA1, and the increased expression of FOLR1. These cumulative data support the hypothesis that exposure to AsIII may contribute to reducing the efficacy of endocrine therapy against ERα-positive breast tumors by hampering the expression of ERα and BRCA1 via CpG methylation, respectively of ESR1 and BRCA1.",
keywords = "Arsenic, BRCA1, Breast cancer, Epigenetics, Estrogen receptor, Tamoxifen",
author = "Ornella Selmin and Donovan, {Micah G.} and Bethany Skovan and Paine-Murieta, {Gillian D.} and Donato Romagnolo",
year = "2019",
month = "3",
day = "1",
doi = "10.3892/ijo.2019.4687",
language = "English (US)",
volume = "54",
pages = "869--878",
journal = "International Journal of Oncology",
issn = "1019-6439",
publisher = "Spandidos Publications",
number = "3",

}

TY - JOUR

T1 - Arsenic‑induced BRCA1 CpG promoter methylation is associated with the downregulation of ERα and resistance to tamoxifen in MCF7 breast cancer cells and mouse mammary tumor xenografts

AU - Selmin, Ornella

AU - Donovan, Micah G.

AU - Skovan, Bethany

AU - Paine-Murieta, Gillian D.

AU - Romagnolo, Donato

PY - 2019/3/1

Y1 - 2019/3/1

N2 - A significant percentage (~30%) of estrogen receptor-α (ERα)-positive tumors become refractory to endocrine therapies; however, the mechanisms responsible for this resistance remain largely unknown. Chronic exposure to arsenic through foods and contaminated water has been linked to an increased incidence of several tumors and long-term health complications. Preclinical and population studies have indicated that arsenic exposure may interfere with endocrine regulation and increase the risk of breast tumorigenesis. In this study, we examined the effects of sodium arsenite (NaAsIII) exposure in ERα-positive breast cancer cells in vitro and in mammary tumor xenografts. The results revealed that acute (within 4 days) and long-term (10 days to 7 weeks) in vitro exposure to environmentally relevant doses reduced breast cancer 1 (BRCA1) and ERα expression associated with the gain of cyclin D1 (CCND1) and folate receptor 1 (FOLR1), and the loss of methylenetetrahydrofolate reductase (MTHFR) expression. Furthermore, long-term exposure to NaAsIIIinduced the proliferation and compromised the response of MCF7 cells to tamoxifen (TAM). The in vitro exposure to NaAsIII induced BRCA1 CpG methylation associated with the increased recruitment of DNA methyltransferase 1 (DNMT1) and the loss of RNA polymerase II (PolII) at the BRCA1 gene. Xenografts of NaAsIII-preconditioned MCF7 cells (MCF7NaAsIII) into the mammary fat pads of nude mice produced a larger tumor volume compared to tumors from control MCF7 cells and were more refractory to TAM in association with the reduced expression of BRCA1 and ERα, CpG hypermethylation of estrogen receptor 1 (ESR1) and BRCA1, and the increased expression of FOLR1. These cumulative data support the hypothesis that exposure to AsIII may contribute to reducing the efficacy of endocrine therapy against ERα-positive breast tumors by hampering the expression of ERα and BRCA1 via CpG methylation, respectively of ESR1 and BRCA1.

AB - A significant percentage (~30%) of estrogen receptor-α (ERα)-positive tumors become refractory to endocrine therapies; however, the mechanisms responsible for this resistance remain largely unknown. Chronic exposure to arsenic through foods and contaminated water has been linked to an increased incidence of several tumors and long-term health complications. Preclinical and population studies have indicated that arsenic exposure may interfere with endocrine regulation and increase the risk of breast tumorigenesis. In this study, we examined the effects of sodium arsenite (NaAsIII) exposure in ERα-positive breast cancer cells in vitro and in mammary tumor xenografts. The results revealed that acute (within 4 days) and long-term (10 days to 7 weeks) in vitro exposure to environmentally relevant doses reduced breast cancer 1 (BRCA1) and ERα expression associated with the gain of cyclin D1 (CCND1) and folate receptor 1 (FOLR1), and the loss of methylenetetrahydrofolate reductase (MTHFR) expression. Furthermore, long-term exposure to NaAsIIIinduced the proliferation and compromised the response of MCF7 cells to tamoxifen (TAM). The in vitro exposure to NaAsIII induced BRCA1 CpG methylation associated with the increased recruitment of DNA methyltransferase 1 (DNMT1) and the loss of RNA polymerase II (PolII) at the BRCA1 gene. Xenografts of NaAsIII-preconditioned MCF7 cells (MCF7NaAsIII) into the mammary fat pads of nude mice produced a larger tumor volume compared to tumors from control MCF7 cells and were more refractory to TAM in association with the reduced expression of BRCA1 and ERα, CpG hypermethylation of estrogen receptor 1 (ESR1) and BRCA1, and the increased expression of FOLR1. These cumulative data support the hypothesis that exposure to AsIII may contribute to reducing the efficacy of endocrine therapy against ERα-positive breast tumors by hampering the expression of ERα and BRCA1 via CpG methylation, respectively of ESR1 and BRCA1.

KW - Arsenic

KW - BRCA1

KW - Breast cancer

KW - Epigenetics

KW - Estrogen receptor

KW - Tamoxifen

UR - http://www.scopus.com/inward/record.url?scp=85060630575&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060630575&partnerID=8YFLogxK

U2 - 10.3892/ijo.2019.4687

DO - 10.3892/ijo.2019.4687

M3 - Article

C2 - 30664189

AN - SCOPUS:85060630575

VL - 54

SP - 869

EP - 878

JO - International Journal of Oncology

JF - International Journal of Oncology

SN - 1019-6439

IS - 3

ER -