Asymmetry of weathering-limited hillslopes: The importance of diurnal covariation in solar insolation and temperature

Jon D. Pelletier, Tyson L. Swetnam

Research output: Research - peer-reviewArticle

  • 1 Citations

Abstract

Hillslope asymmetry, i.e. variation in hillslope form as a function of slope aspect and/or mean solar insolation, has been documented in many climates and geologic contexts. Such patterns have the potential to help us better understand the hydrologic, ecologic, and geomorphologic processes and feedbacks operating on hillslopes. Here we document asymmetry in the fraction of hillslope relief accommodated by cliffs in weathering-limited hillslopes of drainage basins incised into the East Kaibab Monocline (northern Arizona) and Raplee Ridge Monocline (southern Utah) of the southern Colorado Plateau. We document that south- and west-facing hillslopes have a larger proportion of hillslope relief accommodated by cliffs compared with north- and east-facing hillslopes. Cliff abundance correlates positively with mean solar insolation and, by inference, negatively with soil/rock moisture. Solar insolation control of hillslope asymmetry is an incomplete explanation, however, because it cannot account for the fact that the greatest asymmetry occurs between southwest- and northeast-facing hillslopes rather than between south- and north-facing hillslopes in the study sites. Modeling results suggest that southwest-facing hillslopes are more cliff-dominated than southeast-facing hillslopes of the same mean solar insolation in part because potential evapotranspiration rates, which control the soil/rock moisture that drives weathering, are controlled by the product of solar insolation and a nonlinear function of surface temperature, together with the fact that southwest-facing hillslopes receive peak solar insolation during warmer times of day compared with southeast-facing hillslopes. The dependence of water availability on both solar insolation and surface temperature highlights the importance of the diurnal cycle in controlling water availability, and it provides a general explanation for the fact that vegetation cover tends to exhibit the greatest difference between northeast- and southwest-facing hillslopes in the Northern Hemisphere and between southeast- and northwest-facing hillslopes in the Southern Hemisphere.

LanguageEnglish (US)
JournalEarth Surface Processes and Landforms
DOIs
StateAccepted/In press - 2017

Fingerprint

insolation
hillslope
asymmetry
weathering
temperature
water
time of day
climate
cliff
monocline
water availability
relief
surface temperature
moisture
rock
soil
document
potential evapotranspiration
drainage basin
vegetation cover

Keywords

  • Colorado Plateau
  • Slope aspect
  • Solar insolation
  • Weathering

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Earth-Surface Processes
  • Earth and Planetary Sciences (miscellaneous)

Cite this

@article{99af02230b224870b7c718a4575853c2,
title = "Asymmetry of weathering-limited hillslopes: The importance of diurnal covariation in solar insolation and temperature",
abstract = "Hillslope asymmetry, i.e. variation in hillslope form as a function of slope aspect and/or mean solar insolation, has been documented in many climates and geologic contexts. Such patterns have the potential to help us better understand the hydrologic, ecologic, and geomorphologic processes and feedbacks operating on hillslopes. Here we document asymmetry in the fraction of hillslope relief accommodated by cliffs in weathering-limited hillslopes of drainage basins incised into the East Kaibab Monocline (northern Arizona) and Raplee Ridge Monocline (southern Utah) of the southern Colorado Plateau. We document that south- and west-facing hillslopes have a larger proportion of hillslope relief accommodated by cliffs compared with north- and east-facing hillslopes. Cliff abundance correlates positively with mean solar insolation and, by inference, negatively with soil/rock moisture. Solar insolation control of hillslope asymmetry is an incomplete explanation, however, because it cannot account for the fact that the greatest asymmetry occurs between southwest- and northeast-facing hillslopes rather than between south- and north-facing hillslopes in the study sites. Modeling results suggest that southwest-facing hillslopes are more cliff-dominated than southeast-facing hillslopes of the same mean solar insolation in part because potential evapotranspiration rates, which control the soil/rock moisture that drives weathering, are controlled by the product of solar insolation and a nonlinear function of surface temperature, together with the fact that southwest-facing hillslopes receive peak solar insolation during warmer times of day compared with southeast-facing hillslopes. The dependence of water availability on both solar insolation and surface temperature highlights the importance of the diurnal cycle in controlling water availability, and it provides a general explanation for the fact that vegetation cover tends to exhibit the greatest difference between northeast- and southwest-facing hillslopes in the Northern Hemisphere and between southeast- and northwest-facing hillslopes in the Southern Hemisphere.",
keywords = "Colorado Plateau, Slope aspect, Solar insolation, Weathering",
author = "Pelletier, {Jon D.} and Swetnam, {Tyson L.}",
year = "2017",
doi = "10.1002/esp.4136",
journal = "Earth Surface Processes and Landforms",
issn = "0197-9337",
publisher = "John Wiley and Sons Ltd",

}

TY - JOUR

T1 - Asymmetry of weathering-limited hillslopes

T2 - Earth Surface Processes and Landforms

AU - Pelletier,Jon D.

AU - Swetnam,Tyson L.

PY - 2017

Y1 - 2017

N2 - Hillslope asymmetry, i.e. variation in hillslope form as a function of slope aspect and/or mean solar insolation, has been documented in many climates and geologic contexts. Such patterns have the potential to help us better understand the hydrologic, ecologic, and geomorphologic processes and feedbacks operating on hillslopes. Here we document asymmetry in the fraction of hillslope relief accommodated by cliffs in weathering-limited hillslopes of drainage basins incised into the East Kaibab Monocline (northern Arizona) and Raplee Ridge Monocline (southern Utah) of the southern Colorado Plateau. We document that south- and west-facing hillslopes have a larger proportion of hillslope relief accommodated by cliffs compared with north- and east-facing hillslopes. Cliff abundance correlates positively with mean solar insolation and, by inference, negatively with soil/rock moisture. Solar insolation control of hillslope asymmetry is an incomplete explanation, however, because it cannot account for the fact that the greatest asymmetry occurs between southwest- and northeast-facing hillslopes rather than between south- and north-facing hillslopes in the study sites. Modeling results suggest that southwest-facing hillslopes are more cliff-dominated than southeast-facing hillslopes of the same mean solar insolation in part because potential evapotranspiration rates, which control the soil/rock moisture that drives weathering, are controlled by the product of solar insolation and a nonlinear function of surface temperature, together with the fact that southwest-facing hillslopes receive peak solar insolation during warmer times of day compared with southeast-facing hillslopes. The dependence of water availability on both solar insolation and surface temperature highlights the importance of the diurnal cycle in controlling water availability, and it provides a general explanation for the fact that vegetation cover tends to exhibit the greatest difference between northeast- and southwest-facing hillslopes in the Northern Hemisphere and between southeast- and northwest-facing hillslopes in the Southern Hemisphere.

AB - Hillslope asymmetry, i.e. variation in hillslope form as a function of slope aspect and/or mean solar insolation, has been documented in many climates and geologic contexts. Such patterns have the potential to help us better understand the hydrologic, ecologic, and geomorphologic processes and feedbacks operating on hillslopes. Here we document asymmetry in the fraction of hillslope relief accommodated by cliffs in weathering-limited hillslopes of drainage basins incised into the East Kaibab Monocline (northern Arizona) and Raplee Ridge Monocline (southern Utah) of the southern Colorado Plateau. We document that south- and west-facing hillslopes have a larger proportion of hillslope relief accommodated by cliffs compared with north- and east-facing hillslopes. Cliff abundance correlates positively with mean solar insolation and, by inference, negatively with soil/rock moisture. Solar insolation control of hillslope asymmetry is an incomplete explanation, however, because it cannot account for the fact that the greatest asymmetry occurs between southwest- and northeast-facing hillslopes rather than between south- and north-facing hillslopes in the study sites. Modeling results suggest that southwest-facing hillslopes are more cliff-dominated than southeast-facing hillslopes of the same mean solar insolation in part because potential evapotranspiration rates, which control the soil/rock moisture that drives weathering, are controlled by the product of solar insolation and a nonlinear function of surface temperature, together with the fact that southwest-facing hillslopes receive peak solar insolation during warmer times of day compared with southeast-facing hillslopes. The dependence of water availability on both solar insolation and surface temperature highlights the importance of the diurnal cycle in controlling water availability, and it provides a general explanation for the fact that vegetation cover tends to exhibit the greatest difference between northeast- and southwest-facing hillslopes in the Northern Hemisphere and between southeast- and northwest-facing hillslopes in the Southern Hemisphere.

KW - Colorado Plateau

KW - Slope aspect

KW - Solar insolation

KW - Weathering

UR - http://www.scopus.com/inward/record.url?scp=85017583574&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85017583574&partnerID=8YFLogxK

U2 - 10.1002/esp.4136

DO - 10.1002/esp.4136

M3 - Article

JO - Earth Surface Processes and Landforms

JF - Earth Surface Processes and Landforms

SN - 0197-9337

ER -