Authorship analysis in cybercrime investigation

Rong Zheng, Yi Qin, Zan Huang, Hsinchun Chen

Research output: Contribution to journalArticle

59 Scopus citations

Abstract

Criminals have been using the Internet to distribute a wide range of illegal materials globally in an anonymous manner, making criminal identity tracing difficult in the cybercrime investigation process. In this study we propose to adopt the authorship analysis framework to automatically trace identities of cyber criminals through messages they post on the Internet. Under this framework, three types of message features, including style markers, structural features, and content-specific features, are extracted and inductive learning algorithms are used to build feature-based models to identify authorship of illegal messages. To evaluate the effectiveness of this framework, we conducted an experimental study on data sets of English and Chinese email and online newsgroup messages. We experimented with all three types of message features and three inductive learning algorithms. The results indicate that the proposed approach can discover real identities of authors of both English and Chinese Internet messages with relatively high accuracies.

Original languageEnglish (US)
Pages (from-to)59-73
Number of pages15
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2665
StatePublished - Dec 1 2003

    Fingerprint

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this