AUTOMATED TRANSIENT IDENTIFICATION in the DARK ENERGY SURVEY

D. A. Goldstein, C. B. D'Andrea, J. A. Fischer, R. J. Foley, R. R. Gupta, R. Kessler, A. G. Kim, R. C. Nichol, P. E. Nugent, A. Papadopoulos, M. Sako, M. Smith, M. Sullivan, R. C. Thomas, W. Wester, R. C. Wolf, F. B. Abdalla, M. Banerji, A. Benoit-Lévy, E. BertinD. Brooks, A. Carnero Rosell, F. J. Castander, L. N.Da Costa, R. Covarrubias, D. L. Depoy, S. Desai, H. T. Diehl, P. Doel, T. F. Eifler, A. Fausti Neto, D. A. Finley, B. Flaugher, P. Fosalba, J. Frieman, D. Gerdes, D. Gruen, R. A. Gruendl, D. James, K. Kuehn, N. Kuropatkin, O. Lahav, T. S. Li, M. A.G. Maia, M. Makler, M. March, J. L. Marshall, P. Martini, K. W. Merritt, R. Miquel, B. Nord, R. Ogando, A. A. Plazas, A. K. Romer, A. Roodman, E. Sanchez, V. Scarpine, M. Schubnell, I. Sevilla-Noarbe, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E.C. Swanson, G. Tarle, J. Thaler, A. R. Walker

Research output: Contribution to journalArticle

63 Scopus citations

Abstract

We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at http://portal.nserc.gov/project/dessn/autoscan.

Original languageEnglish (US)
Article number82
JournalAstronomical Journal
Volume150
Issue number3
DOIs
StatePublished - Sep 1 2015
Externally publishedYes

    Fingerprint

Keywords

  • methods: data analysis
  • methods: statistical
  • supernovae: general

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Goldstein, D. A., D'Andrea, C. B., Fischer, J. A., Foley, R. J., Gupta, R. R., Kessler, R., Kim, A. G., Nichol, R. C., Nugent, P. E., Papadopoulos, A., Sako, M., Smith, M., Sullivan, M., Thomas, R. C., Wester, W., Wolf, R. C., Abdalla, F. B., Banerji, M., Benoit-Lévy, A., ... Walker, A. R. (2015). AUTOMATED TRANSIENT IDENTIFICATION in the DARK ENERGY SURVEY. Astronomical Journal, 150(3), [82]. https://doi.org/10.1088/0004-6256/150/3/82