Bleomycin pharmacokinetics in man - I. Intravenous administration

D. S. Alberts, H. S.G. Chen, Rosa Liu, K. J. Himmelstein, M. Mayersohn, D. Perrier, J. Gross, T. Moon, A. Broughton, S. E. Salmon

Research output: Contribution to journalArticlepeer-review

60 Scopus citations


Bleomycin plasma decay kinetics and urinary excretion were studied in nine patients after IV bolus injections of 13.7 to 19.9 U/M2. Radio-immunoassay was used to measure bleomycin in plasma and urine samples. The resulting plasma concentration versus time data for each patient and the combined data obtained from all patients were fitted to a multiexponential equation using a nonlinear regression computer program. Pharmacokinetic parameters derived from the mean of all individual patient parameters and the composite of all plasma decay data were similar. Bleomycin initial and terminal plasma half-lives and volume of distribution for all plasma decay data from eight patients with normal serum creatinies were 24.4±4.0 min, 237.5±8.5 min, and 17.3±1.5 L/M2, respectively. Mean 24-h urinary excretion accounted for 44.8±12.6% of the dose in seven patients who had normal serum creatinine values and complete urine collections. The total body clearance and renal clearance in these seven patients averaged 50.5±4.1 ml/min/M2 and 23.0±1.9 ml/min/M2, respectively. One patient with a serum creatinine of 1.5 mg% (normal 0.7 to 1.3 mg%) who was given 15.6 U/M2 had a terminal plasma halflife of 624 min, a volume of distribution of 36.3 L/M2, and 24-h urinary excretion of 11.6% of the dose. We conclude that bleomycin after intravenous bolus injection has a relatively short terminal phase plasma halflife and relatively large urinary elimination.

Original languageEnglish (US)
Pages (from-to)177-181
Number of pages5
JournalCancer Chemotherapy And Pharmacology
Issue number3
StatePublished - Sep 1978

ASJC Scopus subject areas

  • Oncology
  • Toxicology
  • Pharmacology
  • Cancer Research
  • Pharmacology (medical)


Dive into the research topics of 'Bleomycin pharmacokinetics in man - I. Intravenous administration'. Together they form a unique fingerprint.

Cite this