Body mass-specific Na+-K+-ATPase activity in the medullary thick ascending limb: Implications for species-dependent urine concentrating mechanisms

Mun Aw, Tamara M. Armstrong, C. Michele Nawata, Sarah N. Bodine, Jeeeun J. Oh, Guojun Wei, Kristen K. Evans, Mohammad - Shahidullah, Timo Rieg, Thomas L Pannabecker

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high UmaxMore vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.

Original languageEnglish (US)
Pages (from-to)R563-R573
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume314
Issue number4
DOIs
Publication statusPublished - Apr 16 2018

    Fingerprint

Keywords

  • Comparative physiology
  • Countercurrent multiplication
  • Loop of henle
  • Renal outer medulla
  • Sodium transport

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this