TY - JOUR
T1 - Bone marrow-derived endothelial progenitor cells contribute to monocrotaline-induced pulmonary arterial hypertension in rats via inhibition of store-operated Ca2+ channels
AU - Miao, Ran
AU - Wan, Jun
AU - Liu, Jie
AU - Yuan, Jason X.J.
AU - Wang, Jing
AU - Xie, Wanmu
AU - Zhai, Zhenguo
AU - Wang, Chen
N1 - Funding Information:
This study was supported by the National Natural Science Foundation of China (81270117, 81300044), Beijing Natural Science Foundation (7162069), the Fund of The National Key Research and Development Program of China (2016YFC0905600).
PY - 2018
Y1 - 2018
N2 - Purpose. This study aimed to explore whether bone marrow- (BM-) derived endothelial progenitor cells (EPCs) contributing to monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH) in rats via modulating store-operated Ca2+ channels (SOC). Methods. Sprague Dawley (SD) rats were assigned into MCT group (n = 30) and control group (n = 20). Rats in MCT group were subcutaneously administered with 60 mg/kg MCT solution, and rats in control group were injected with equal amount of vehicle. After 3 weeks of treatment, right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of two groups were measured, and BM-derived EPCs were isolated. Immunochemistry identification and vasculogenesis detection of EPCs were then performed. Ca2+cyt measurement was performed to detect store-operated calcium entry (SOCE) in two groups, followed by determination of Orai and canonical transient receptor potential (TRPC) channels expression. Results. After 3 weeks of treatment, there were significant increases in RVSP and RVHI in MCT group compared with control group, indicating that MCT successfully induced PAH in rats. Moreover, the SOCE (Ca2+cyt rise) in BM-derived EPCs of MCT group was lower than that of control group. Furthermore, the expression levels of Orai3, TRPC1, TRPC3, and TRPC6 in BM-derived EPCs were decreased in MCT group in comparison with control group. Conclusions. The SOC activities were inhibited in BM-derived EPCs of MCT-treated rats. These results may be associated with the depressed expression of Orai3, TRPC1, TRPC3, and TRPC6, which are major mediators of SOC.
AB - Purpose. This study aimed to explore whether bone marrow- (BM-) derived endothelial progenitor cells (EPCs) contributing to monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH) in rats via modulating store-operated Ca2+ channels (SOC). Methods. Sprague Dawley (SD) rats were assigned into MCT group (n = 30) and control group (n = 20). Rats in MCT group were subcutaneously administered with 60 mg/kg MCT solution, and rats in control group were injected with equal amount of vehicle. After 3 weeks of treatment, right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of two groups were measured, and BM-derived EPCs were isolated. Immunochemistry identification and vasculogenesis detection of EPCs were then performed. Ca2+cyt measurement was performed to detect store-operated calcium entry (SOCE) in two groups, followed by determination of Orai and canonical transient receptor potential (TRPC) channels expression. Results. After 3 weeks of treatment, there were significant increases in RVSP and RVHI in MCT group compared with control group, indicating that MCT successfully induced PAH in rats. Moreover, the SOCE (Ca2+cyt rise) in BM-derived EPCs of MCT group was lower than that of control group. Furthermore, the expression levels of Orai3, TRPC1, TRPC3, and TRPC6 in BM-derived EPCs were decreased in MCT group in comparison with control group. Conclusions. The SOC activities were inhibited in BM-derived EPCs of MCT-treated rats. These results may be associated with the depressed expression of Orai3, TRPC1, TRPC3, and TRPC6, which are major mediators of SOC.
UR - http://www.scopus.com/inward/record.url?scp=85054354016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054354016&partnerID=8YFLogxK
U2 - 10.1155/2018/4892349
DO - 10.1155/2018/4892349
M3 - Article
C2 - 30320134
AN - SCOPUS:85054354016
VL - 2018
JO - BioMed Research International
JF - BioMed Research International
SN - 2314-6133
M1 - 4892349
ER -