Ca++-switch induction of RPE differentiation

Daniel J. Rak, Katherine M. Hardy, Glenn J. Jaffe, Brian S. McKay

Research output: Contribution to journalArticle

29 Scopus citations

Abstract

Cultured retinal pigment epithelial (RPE) cells are commonly used as a model of the tissue to study their involvement in visual diseases. Unfortunately, cultured RPE often lose their differentiated phenotype reducing their usefulness as a model of the RPE in vivo. In this study, we used a Ca ++-switch protocol to initiate the patterned expression of several phenotypic and functional markers of RPE differentiation. Cultured RPE cells from adult donors were maintained through at least six serial passages prior to assay to minimize their differentiated properties. The cells were then subjected to the Ca++-switch protocol and maintained at confluence for up to 4 months. Paired control and Ca++-switch cells were examined for phenotype, pigmentation, and the expression of tyrosinase, CRABP, myocilin, and bestrophin by western blot analysis. The Ca++-switch protocol led to a rapid restriction of N-cadherin to lateral cell borders, and to expression of tyrosinase by day 4. After 8 weeks, the experimental RPE monolayers began to accumulate visible pigment, and after 12 weeks CRABP expression was observed. Myocilin was observed at 4 months after the Ca++-switch but bestrophin was not detected at any time point. Our results suggest this protocol may drive epithelial morphogenesis in RPE cells. We note two specific differences in cells plated in low Ca++, reduced spreading on the substrate and coordinated development of cadherin adhesion when the Ca ++-concentration is returned to normal. Thus, we suggest that this method produces phenotypic changes through multiple cell signalling pathways.

Original languageEnglish (US)
Pages (from-to)648-656
Number of pages9
JournalExperimental eye research
Volume82
Issue number4
DOIs
StatePublished - Apr 1 2006

Keywords

  • Bestrophin
  • Cadherin
  • Cellular retinaldehyde binding protein
  • Development
  • Myocilin
  • Pigment
  • Retinal pigment epithelium
  • Tyrosinase

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Ca<sup>++</sup>-switch induction of RPE differentiation'. Together they form a unique fingerprint.

  • Cite this