Abstract
This paper considers a distributed storage system, where multiple storage nodes can be reconstructed simultaneously at a centralized location. This centralized multi-node repair (CMR) model is a generalization of regenerating codes that allow for bandwidth-efficient repair of a single failed node. This work focuses on the trade-off between the amount of data stored and repair bandwidth in this CMR model. In particular, repair bandwidth bounds are derived for the minimum storage multi-node repair (MSMR) and the minimum bandwidth multi-node repair (MBMR) operating points. The tightness of these bounds are analyzed via code constructions. The MSMR point is characterized through codes achieving this point under functional repair for general set of CMR parameters, as well as with codes enabling exact repair for certain CMR parameters. The MBMR point, on the other hand, is characterized with exact repair codes for all CMR parameters for systems that satisfy a certain entropy accumulation property.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1003-1007 |
Number of pages | 5 |
Volume | 2016-August |
ISBN (Electronic) | 9781509018062 |
DOIs | |
State | Published - Aug 10 2016 |
Event | 2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain Duration: Jul 10 2016 → Jul 15 2016 |
Other
Other | 2016 IEEE International Symposium on Information Theory, ISIT 2016 |
---|---|
Country | Spain |
City | Barcelona |
Period | 7/10/16 → 7/15/16 |
Keywords
- centralized multi-node regeneration
- Codes for distributed storage
- regenerating codes
ASJC Scopus subject areas
- Theoretical Computer Science
- Information Systems
- Modeling and Simulation
- Applied Mathematics