Changes in microbial communities and associated water and gas geochemistry across a sulfate gradient in coal beds: Powder River Basin, USA

Hannah Schweitzer, Daniel Ritter, Jennifer McIntosh, Elliott Barnhart, Al B. Cunningham, David Vinson, William Orem, Matthew W. Fields

Research output: Contribution to journalArticle

Abstract

Competition between microbial sulfate reduction and methanogenesis drives cycling of fossil carbon and generation of CH4 in sedimentary basins. However, little is understood about the fundamental relationship between subsurface aqueous geochemistry and microbiology that drives these processes. Here we relate elemental and isotopic geochemistry of coal-associated water and gas to the microbial community composition from wells in two different coal beds across CH4 and SO4 2− gradients (Powder River Basin, Montana, USA). Areas with high CH4 concentrations generally have higher alkalinity and δ13C-DIC values, little to no SO4 2−, and greater conversion of coal-biodegradable organics to CH4 (based on δ13C-CH4 and δ13C-CO2 values). Wells with SO4 2− concentrations from 2 to 10 mM had bacterial populations dominated by several different sulfate-reducing bacteria and archaea that were mostly novel and unclassified. In contrast, in wells with SO4 2− concentrations <1 mM, the sequences were dominated by presumptive syntrophic bacteria as well as archaeal Methanosarcinales and Methanomicrobiales. The presence of sequences indicative of these bacteria in low SO4 2− methanogenic wells may suggest a syntrophic role in coal biodegradation and/or the generation of methanogenic substrates from intermediate organic compounds. Archaeal sequences were observed in all sampled zones, with an enrichment of sequences indicative of methanogens in low SO4 2− zones and unclassified sequences in high SO4 2− zones. However, sequences indicative of Methanomassiliicoccales were enriched in intermediate SO4 2− zones and suggest tolerance to SO4 2− and/or alternative metabolisms in the presence of SO4 2−. Moreover, sequences indicative of methylotrophic methanogens were more prevalent in an intermediate SO4 2− and CH4 well and results suggest an important role for methylotrophic methanogens in critical zone transitions. The presented results demonstrate in situ changes in bacterial and archaeal population distributions along a SO4 2− gradient associated with recalcitrant, organic carbon that is biodegraded and converted to CO2 and/or CH4.

Original languageEnglish (US)
Pages (from-to)495-513
Number of pages19
JournalGeochimica et Cosmochimica Acta
Volume245
DOIs
StatePublished - Jan 15 2019

Fingerprint

Geochemistry
Coal
Methanogens
coal seam
Catchments
Powders
Sulfates
microbial community
river basin
Gases
Rivers
geochemistry
sulfate
well
Bacteria
Water
coal
gas
Population distribution
Microbiology

Keywords

  • Coal-dependent methanogenesis
  • Methane
  • Sulfate

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

Changes in microbial communities and associated water and gas geochemistry across a sulfate gradient in coal beds : Powder River Basin, USA. / Schweitzer, Hannah; Ritter, Daniel; McIntosh, Jennifer; Barnhart, Elliott; Cunningham, Al B.; Vinson, David; Orem, William; Fields, Matthew W.

In: Geochimica et Cosmochimica Acta, Vol. 245, 15.01.2019, p. 495-513.

Research output: Contribution to journalArticle

Schweitzer, Hannah ; Ritter, Daniel ; McIntosh, Jennifer ; Barnhart, Elliott ; Cunningham, Al B. ; Vinson, David ; Orem, William ; Fields, Matthew W. / Changes in microbial communities and associated water and gas geochemistry across a sulfate gradient in coal beds : Powder River Basin, USA. In: Geochimica et Cosmochimica Acta. 2019 ; Vol. 245. pp. 495-513.
@article{b7ad288506df4837bcc8925c45ccf42b,
title = "Changes in microbial communities and associated water and gas geochemistry across a sulfate gradient in coal beds: Powder River Basin, USA",
abstract = "Competition between microbial sulfate reduction and methanogenesis drives cycling of fossil carbon and generation of CH4 in sedimentary basins. However, little is understood about the fundamental relationship between subsurface aqueous geochemistry and microbiology that drives these processes. Here we relate elemental and isotopic geochemistry of coal-associated water and gas to the microbial community composition from wells in two different coal beds across CH4 and SO4 2− gradients (Powder River Basin, Montana, USA). Areas with high CH4 concentrations generally have higher alkalinity and δ13C-DIC values, little to no SO4 2−, and greater conversion of coal-biodegradable organics to CH4 (based on δ13C-CH4 and δ13C-CO2 values). Wells with SO4 2− concentrations from 2 to 10 mM had bacterial populations dominated by several different sulfate-reducing bacteria and archaea that were mostly novel and unclassified. In contrast, in wells with SO4 2− concentrations <1 mM, the sequences were dominated by presumptive syntrophic bacteria as well as archaeal Methanosarcinales and Methanomicrobiales. The presence of sequences indicative of these bacteria in low SO4 2− methanogenic wells may suggest a syntrophic role in coal biodegradation and/or the generation of methanogenic substrates from intermediate organic compounds. Archaeal sequences were observed in all sampled zones, with an enrichment of sequences indicative of methanogens in low SO4 2− zones and unclassified sequences in high SO4 2− zones. However, sequences indicative of Methanomassiliicoccales were enriched in intermediate SO4 2− zones and suggest tolerance to SO4 2− and/or alternative metabolisms in the presence of SO4 2−. Moreover, sequences indicative of methylotrophic methanogens were more prevalent in an intermediate SO4 2− and CH4 well and results suggest an important role for methylotrophic methanogens in critical zone transitions. The presented results demonstrate in situ changes in bacterial and archaeal population distributions along a SO4 2− gradient associated with recalcitrant, organic carbon that is biodegraded and converted to CO2 and/or CH4.",
keywords = "Coal-dependent methanogenesis, Methane, Sulfate",
author = "Hannah Schweitzer and Daniel Ritter and Jennifer McIntosh and Elliott Barnhart and Cunningham, {Al B.} and David Vinson and William Orem and Fields, {Matthew W.}",
year = "2019",
month = "1",
day = "15",
doi = "10.1016/j.gca.2018.11.009",
language = "English (US)",
volume = "245",
pages = "495--513",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Changes in microbial communities and associated water and gas geochemistry across a sulfate gradient in coal beds

T2 - Powder River Basin, USA

AU - Schweitzer, Hannah

AU - Ritter, Daniel

AU - McIntosh, Jennifer

AU - Barnhart, Elliott

AU - Cunningham, Al B.

AU - Vinson, David

AU - Orem, William

AU - Fields, Matthew W.

PY - 2019/1/15

Y1 - 2019/1/15

N2 - Competition between microbial sulfate reduction and methanogenesis drives cycling of fossil carbon and generation of CH4 in sedimentary basins. However, little is understood about the fundamental relationship between subsurface aqueous geochemistry and microbiology that drives these processes. Here we relate elemental and isotopic geochemistry of coal-associated water and gas to the microbial community composition from wells in two different coal beds across CH4 and SO4 2− gradients (Powder River Basin, Montana, USA). Areas with high CH4 concentrations generally have higher alkalinity and δ13C-DIC values, little to no SO4 2−, and greater conversion of coal-biodegradable organics to CH4 (based on δ13C-CH4 and δ13C-CO2 values). Wells with SO4 2− concentrations from 2 to 10 mM had bacterial populations dominated by several different sulfate-reducing bacteria and archaea that were mostly novel and unclassified. In contrast, in wells with SO4 2− concentrations <1 mM, the sequences were dominated by presumptive syntrophic bacteria as well as archaeal Methanosarcinales and Methanomicrobiales. The presence of sequences indicative of these bacteria in low SO4 2− methanogenic wells may suggest a syntrophic role in coal biodegradation and/or the generation of methanogenic substrates from intermediate organic compounds. Archaeal sequences were observed in all sampled zones, with an enrichment of sequences indicative of methanogens in low SO4 2− zones and unclassified sequences in high SO4 2− zones. However, sequences indicative of Methanomassiliicoccales were enriched in intermediate SO4 2− zones and suggest tolerance to SO4 2− and/or alternative metabolisms in the presence of SO4 2−. Moreover, sequences indicative of methylotrophic methanogens were more prevalent in an intermediate SO4 2− and CH4 well and results suggest an important role for methylotrophic methanogens in critical zone transitions. The presented results demonstrate in situ changes in bacterial and archaeal population distributions along a SO4 2− gradient associated with recalcitrant, organic carbon that is biodegraded and converted to CO2 and/or CH4.

AB - Competition between microbial sulfate reduction and methanogenesis drives cycling of fossil carbon and generation of CH4 in sedimentary basins. However, little is understood about the fundamental relationship between subsurface aqueous geochemistry and microbiology that drives these processes. Here we relate elemental and isotopic geochemistry of coal-associated water and gas to the microbial community composition from wells in two different coal beds across CH4 and SO4 2− gradients (Powder River Basin, Montana, USA). Areas with high CH4 concentrations generally have higher alkalinity and δ13C-DIC values, little to no SO4 2−, and greater conversion of coal-biodegradable organics to CH4 (based on δ13C-CH4 and δ13C-CO2 values). Wells with SO4 2− concentrations from 2 to 10 mM had bacterial populations dominated by several different sulfate-reducing bacteria and archaea that were mostly novel and unclassified. In contrast, in wells with SO4 2− concentrations <1 mM, the sequences were dominated by presumptive syntrophic bacteria as well as archaeal Methanosarcinales and Methanomicrobiales. The presence of sequences indicative of these bacteria in low SO4 2− methanogenic wells may suggest a syntrophic role in coal biodegradation and/or the generation of methanogenic substrates from intermediate organic compounds. Archaeal sequences were observed in all sampled zones, with an enrichment of sequences indicative of methanogens in low SO4 2− zones and unclassified sequences in high SO4 2− zones. However, sequences indicative of Methanomassiliicoccales were enriched in intermediate SO4 2− zones and suggest tolerance to SO4 2− and/or alternative metabolisms in the presence of SO4 2−. Moreover, sequences indicative of methylotrophic methanogens were more prevalent in an intermediate SO4 2− and CH4 well and results suggest an important role for methylotrophic methanogens in critical zone transitions. The presented results demonstrate in situ changes in bacterial and archaeal population distributions along a SO4 2− gradient associated with recalcitrant, organic carbon that is biodegraded and converted to CO2 and/or CH4.

KW - Coal-dependent methanogenesis

KW - Methane

KW - Sulfate

UR - http://www.scopus.com/inward/record.url?scp=85057353142&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85057353142&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2018.11.009

DO - 10.1016/j.gca.2018.11.009

M3 - Article

VL - 245

SP - 495

EP - 513

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

ER -