Characterization of a 12-mer duplex d(GGCGGAGTTAGG)·d(CCTAACTCCGCC) containing a highly reactive (+)-CC-1065 sequence by 1H and 31P NMR, hydroxyl-radical footprinting, and NOESY restrained molecular dynamics calculations

Chin Hsiung Lin, Laurence Hurley, Laurence H. Hurley

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

The solution structure of the GC-rich non-self-complementary DNA 12-mer duplex (I), which contains a (+)-CC-1065 highly reactive bonding sequence 5′AGTTA* (where * denotes the (Matrix Presented) covalent modification site), has been examined thoroughly by one- and two-dimensional proton and phosphorus NMR spectroscopy, hydroxyl-radical footprinting, and NOESY restrained molecular mechanics and dynamics calculations. The assignments of the nonexchangeable proton resonances (except some of the H5′ and H5″ protons due to severe resonance overlap), phosphorus resonances, and the exchangeable resonances (except amino protons of adenosine and guanosine) of this 12-mer duplex have been made. The results show that this 12-mer duplex maintains an overall B-form DNA with all anti base orientation throughout in aqueous solution at room temperature. Hydroxyl-radical footprinting experiments on a 21-mer sequence that contains this 12-mer duplex used for NMR studies showed that the minor groove is somewhat narrowed at the 7G-8T and 17A-18C steps, as indicated by the inhibition of cleavage at these locations. Although both high-field NMR and hydroxyl-radical footprinting experiments supported a bent-like structure for this 12-mer duplex, nondenaturing gel electrophoresis on the ligated 21-mer sequence that contains this 12-mer duplex did not show the abnormally slow migration characteristic of a bent DNA duplex. Analysis of the NMR data sets reveals several local structural perturbations similar to those found on an (A)n tract DNA duplex. For example, the existence of a propeller twist was detected within the A·T-rich region for both the 12-mer and the (A)n tract DNA duplexes. The 18CH5 aromatic resonance that is directly adjacent to the 3′ side of the 5′TAA segment was significantly shifted upfield with a chemical shift of 5.10 ppm, which is almost within the region normally associated with sugar H3′ protons. The sugar geometries for 18C and 7G, which are located to the 3′ side of the 5′TAA segment, are proposed to be in the neighborhood of C3′-endo and O1′-endo ⇔ C3′-endo, respectively. We propose that this unusually upfield-shifted resonance signal for 18CH5 and the average C3′-endo sugar geometry for 18C nucleotide on the 12-mer duplex is connected with the peculiar conformation, possibly a transient kink, within the 5′AC/GT step. The results of the NOESY restrained molecular mechanics and dynamics calculations on the 12-mer sequence reveal two kinks, which are located on either side of the 18C nucleotide that has an average C3′-endo sugar geometry. The two phosphorus resonance signals that are located at the 7G-8T and the 18C-19T steps, where the minor groove is narrowed as indicated by the hydroxyl-radical footprinting experiments, displayed unusual upfield chemical shifts. Also identified were two unusually broadened base protons of the 16A nucleotide and one imino proton belonging to the 9T·16A base pair within the A·T-rich segment. We proposed that this broadening phenomenon is most likely due to a unique internal motion characterized by a rapid local conformational equilibrium between microstates of the 12-mer duplex in aqueous solution at room temperature. This local conformational flexibility, a transient kink, and the bent-like structure are proposed to play a critical role in the sequence-specific recognition of the DNA duplex by (+)-CC-1065.

Original languageEnglish (US)
Pages (from-to)167-182
Number of pages16
JournalChemical Research in Toxicology
Volume5
Issue number2
StatePublished - 1992
Externally publishedYes

Fingerprint

CC 1065
Molecular Dynamics Simulation
Hydroxyl Radical
Molecular dynamics
Protons
Nuclear magnetic resonance
Sugars
Phosphorus
Molecular mechanics
Nucleotides
DNA
Chemical shift
Mechanics
Geometry
AT Rich Sequence
B-Form DNA
Temperature
Guanosine
Experiments
Propellers

ASJC Scopus subject areas

  • Drug Discovery
  • Organic Chemistry
  • Chemistry(all)
  • Toxicology
  • Health, Toxicology and Mutagenesis

Cite this

@article{3724c97793c54706ad5c235ac1c4e507,
title = "Characterization of a 12-mer duplex d(GGCGGAGTTAGG)·d(CCTAACTCCGCC) containing a highly reactive (+)-CC-1065 sequence by 1H and 31P NMR, hydroxyl-radical footprinting, and NOESY restrained molecular dynamics calculations",
abstract = "The solution structure of the GC-rich non-self-complementary DNA 12-mer duplex (I), which contains a (+)-CC-1065 highly reactive bonding sequence 5′AGTTA* (where * denotes the (Matrix Presented) covalent modification site), has been examined thoroughly by one- and two-dimensional proton and phosphorus NMR spectroscopy, hydroxyl-radical footprinting, and NOESY restrained molecular mechanics and dynamics calculations. The assignments of the nonexchangeable proton resonances (except some of the H5′ and H5″ protons due to severe resonance overlap), phosphorus resonances, and the exchangeable resonances (except amino protons of adenosine and guanosine) of this 12-mer duplex have been made. The results show that this 12-mer duplex maintains an overall B-form DNA with all anti base orientation throughout in aqueous solution at room temperature. Hydroxyl-radical footprinting experiments on a 21-mer sequence that contains this 12-mer duplex used for NMR studies showed that the minor groove is somewhat narrowed at the 7G-8T and 17A-18C steps, as indicated by the inhibition of cleavage at these locations. Although both high-field NMR and hydroxyl-radical footprinting experiments supported a bent-like structure for this 12-mer duplex, nondenaturing gel electrophoresis on the ligated 21-mer sequence that contains this 12-mer duplex did not show the abnormally slow migration characteristic of a bent DNA duplex. Analysis of the NMR data sets reveals several local structural perturbations similar to those found on an (A)n tract DNA duplex. For example, the existence of a propeller twist was detected within the A·T-rich region for both the 12-mer and the (A)n tract DNA duplexes. The 18CH5 aromatic resonance that is directly adjacent to the 3′ side of the 5′TAA segment was significantly shifted upfield with a chemical shift of 5.10 ppm, which is almost within the region normally associated with sugar H3′ protons. The sugar geometries for 18C and 7G, which are located to the 3′ side of the 5′TAA segment, are proposed to be in the neighborhood of C3′-endo and O1′-endo ⇔ C3′-endo, respectively. We propose that this unusually upfield-shifted resonance signal for 18CH5 and the average C3′-endo sugar geometry for 18C nucleotide on the 12-mer duplex is connected with the peculiar conformation, possibly a transient kink, within the 5′AC/GT step. The results of the NOESY restrained molecular mechanics and dynamics calculations on the 12-mer sequence reveal two kinks, which are located on either side of the 18C nucleotide that has an average C3′-endo sugar geometry. The two phosphorus resonance signals that are located at the 7G-8T and the 18C-19T steps, where the minor groove is narrowed as indicated by the hydroxyl-radical footprinting experiments, displayed unusual upfield chemical shifts. Also identified were two unusually broadened base protons of the 16A nucleotide and one imino proton belonging to the 9T·16A base pair within the A·T-rich segment. We proposed that this broadening phenomenon is most likely due to a unique internal motion characterized by a rapid local conformational equilibrium between microstates of the 12-mer duplex in aqueous solution at room temperature. This local conformational flexibility, a transient kink, and the bent-like structure are proposed to play a critical role in the sequence-specific recognition of the DNA duplex by (+)-CC-1065.",
author = "Lin, {Chin Hsiung} and Laurence Hurley and Hurley, {Laurence H.}",
year = "1992",
language = "English (US)",
volume = "5",
pages = "167--182",
journal = "Chemical Research in Toxicology",
issn = "0893-228X",
publisher = "American Chemical Society",
number = "2",

}

TY - JOUR

T1 - Characterization of a 12-mer duplex d(GGCGGAGTTAGG)·d(CCTAACTCCGCC) containing a highly reactive (+)-CC-1065 sequence by 1H and 31P NMR, hydroxyl-radical footprinting, and NOESY restrained molecular dynamics calculations

AU - Lin, Chin Hsiung

AU - Hurley, Laurence

AU - Hurley, Laurence H.

PY - 1992

Y1 - 1992

N2 - The solution structure of the GC-rich non-self-complementary DNA 12-mer duplex (I), which contains a (+)-CC-1065 highly reactive bonding sequence 5′AGTTA* (where * denotes the (Matrix Presented) covalent modification site), has been examined thoroughly by one- and two-dimensional proton and phosphorus NMR spectroscopy, hydroxyl-radical footprinting, and NOESY restrained molecular mechanics and dynamics calculations. The assignments of the nonexchangeable proton resonances (except some of the H5′ and H5″ protons due to severe resonance overlap), phosphorus resonances, and the exchangeable resonances (except amino protons of adenosine and guanosine) of this 12-mer duplex have been made. The results show that this 12-mer duplex maintains an overall B-form DNA with all anti base orientation throughout in aqueous solution at room temperature. Hydroxyl-radical footprinting experiments on a 21-mer sequence that contains this 12-mer duplex used for NMR studies showed that the minor groove is somewhat narrowed at the 7G-8T and 17A-18C steps, as indicated by the inhibition of cleavage at these locations. Although both high-field NMR and hydroxyl-radical footprinting experiments supported a bent-like structure for this 12-mer duplex, nondenaturing gel electrophoresis on the ligated 21-mer sequence that contains this 12-mer duplex did not show the abnormally slow migration characteristic of a bent DNA duplex. Analysis of the NMR data sets reveals several local structural perturbations similar to those found on an (A)n tract DNA duplex. For example, the existence of a propeller twist was detected within the A·T-rich region for both the 12-mer and the (A)n tract DNA duplexes. The 18CH5 aromatic resonance that is directly adjacent to the 3′ side of the 5′TAA segment was significantly shifted upfield with a chemical shift of 5.10 ppm, which is almost within the region normally associated with sugar H3′ protons. The sugar geometries for 18C and 7G, which are located to the 3′ side of the 5′TAA segment, are proposed to be in the neighborhood of C3′-endo and O1′-endo ⇔ C3′-endo, respectively. We propose that this unusually upfield-shifted resonance signal for 18CH5 and the average C3′-endo sugar geometry for 18C nucleotide on the 12-mer duplex is connected with the peculiar conformation, possibly a transient kink, within the 5′AC/GT step. The results of the NOESY restrained molecular mechanics and dynamics calculations on the 12-mer sequence reveal two kinks, which are located on either side of the 18C nucleotide that has an average C3′-endo sugar geometry. The two phosphorus resonance signals that are located at the 7G-8T and the 18C-19T steps, where the minor groove is narrowed as indicated by the hydroxyl-radical footprinting experiments, displayed unusual upfield chemical shifts. Also identified were two unusually broadened base protons of the 16A nucleotide and one imino proton belonging to the 9T·16A base pair within the A·T-rich segment. We proposed that this broadening phenomenon is most likely due to a unique internal motion characterized by a rapid local conformational equilibrium between microstates of the 12-mer duplex in aqueous solution at room temperature. This local conformational flexibility, a transient kink, and the bent-like structure are proposed to play a critical role in the sequence-specific recognition of the DNA duplex by (+)-CC-1065.

AB - The solution structure of the GC-rich non-self-complementary DNA 12-mer duplex (I), which contains a (+)-CC-1065 highly reactive bonding sequence 5′AGTTA* (where * denotes the (Matrix Presented) covalent modification site), has been examined thoroughly by one- and two-dimensional proton and phosphorus NMR spectroscopy, hydroxyl-radical footprinting, and NOESY restrained molecular mechanics and dynamics calculations. The assignments of the nonexchangeable proton resonances (except some of the H5′ and H5″ protons due to severe resonance overlap), phosphorus resonances, and the exchangeable resonances (except amino protons of adenosine and guanosine) of this 12-mer duplex have been made. The results show that this 12-mer duplex maintains an overall B-form DNA with all anti base orientation throughout in aqueous solution at room temperature. Hydroxyl-radical footprinting experiments on a 21-mer sequence that contains this 12-mer duplex used for NMR studies showed that the minor groove is somewhat narrowed at the 7G-8T and 17A-18C steps, as indicated by the inhibition of cleavage at these locations. Although both high-field NMR and hydroxyl-radical footprinting experiments supported a bent-like structure for this 12-mer duplex, nondenaturing gel electrophoresis on the ligated 21-mer sequence that contains this 12-mer duplex did not show the abnormally slow migration characteristic of a bent DNA duplex. Analysis of the NMR data sets reveals several local structural perturbations similar to those found on an (A)n tract DNA duplex. For example, the existence of a propeller twist was detected within the A·T-rich region for both the 12-mer and the (A)n tract DNA duplexes. The 18CH5 aromatic resonance that is directly adjacent to the 3′ side of the 5′TAA segment was significantly shifted upfield with a chemical shift of 5.10 ppm, which is almost within the region normally associated with sugar H3′ protons. The sugar geometries for 18C and 7G, which are located to the 3′ side of the 5′TAA segment, are proposed to be in the neighborhood of C3′-endo and O1′-endo ⇔ C3′-endo, respectively. We propose that this unusually upfield-shifted resonance signal for 18CH5 and the average C3′-endo sugar geometry for 18C nucleotide on the 12-mer duplex is connected with the peculiar conformation, possibly a transient kink, within the 5′AC/GT step. The results of the NOESY restrained molecular mechanics and dynamics calculations on the 12-mer sequence reveal two kinks, which are located on either side of the 18C nucleotide that has an average C3′-endo sugar geometry. The two phosphorus resonance signals that are located at the 7G-8T and the 18C-19T steps, where the minor groove is narrowed as indicated by the hydroxyl-radical footprinting experiments, displayed unusual upfield chemical shifts. Also identified were two unusually broadened base protons of the 16A nucleotide and one imino proton belonging to the 9T·16A base pair within the A·T-rich segment. We proposed that this broadening phenomenon is most likely due to a unique internal motion characterized by a rapid local conformational equilibrium between microstates of the 12-mer duplex in aqueous solution at room temperature. This local conformational flexibility, a transient kink, and the bent-like structure are proposed to play a critical role in the sequence-specific recognition of the DNA duplex by (+)-CC-1065.

UR - http://www.scopus.com/inward/record.url?scp=0026508739&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026508739&partnerID=8YFLogxK

M3 - Article

C2 - 1322736

AN - SCOPUS:0026508739

VL - 5

SP - 167

EP - 182

JO - Chemical Research in Toxicology

JF - Chemical Research in Toxicology

SN - 0893-228X

IS - 2

ER -