Chronostratigraphy of the Baringo-Tugen-Barsemoi (HSPDP-BTB13-1A) core – 40Ar/39Ar dating, magnetostratigraphy, tephrostratigraphy, sequence stratigraphy and Bayesian age modeling

A. L. Deino, M. J. Sier, D. Garello, B. Keller, J. Kingston, J. Scott, G. Dupont-Nivet, Andrew Cohen

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The Baringo-Tugen-Barsemoi 2013 drillcore (BTB13), acquired as part of the Hominin Sites and Paleolakes Drilling Project, recovered 228 m of fluviolacustrine sedimentary rocks and tuffs spanning a ~3.29–2.56 Ma interval of the highly fossiliferous and hominin-bearing Chemeron Formation, Tugen Hills, Kenya. Here we present a Bayesian stratigraphic age model for the core employing chronostratigraphic control points derived from 40Ar/39Ar dating of tuffs from core and outcrop, 40Ar/39Ar age calibration of related outcrop diatomaceous units, and core magnetostratigraphy. The age model reveals three main intervals with distinct sediment accumulation rates: an early rapid phase from 3.2 to 2.9 Ma; a relatively slow phase from 2.9 to 2.7 Ma; and the highest rate of accumulation from 2.7 to 2.6 Ma. The intervals of rapid accumulation correspond to periods of high Earth orbital eccentricity, whereas the slow accumulation interval corresponds to low eccentricity at 2.9–2.7 Ma, suggesting that astronomically mediated climate processes may be responsible for the observed changes in sediment accumulation rate. Lacustrine transgression-regression events, as delineated using sequence stratigraphy, dominantly operate on precession scale, particularly within the high eccentricity periods. A set of erosively based fluvial conglomerates correspond to the 2.9–2.7 Ma interval, which could be related to either the depositional response to low eccentricity or to the development of unconformities due to local tectonic activity. Age calibration of core magnetic susceptibility and gamma density logs indicates a close temporal correspondence between a shift from high- to low-frequency signal variability at ~3 Ma, approximately coincident the end of the mid-Piacenzian Warm Period, and the beginning of the cooling of world climate leading to the initiation of Northern Hemispheric glaciation c. 2.7 Ma. BTB13 and the Baringo Basin records may thus provide evidence of a connection between high-latitude glaciation and equatorial terrestrial climate toward the end of the Pliocene.

Original languageEnglish (US)
Article number109258
JournalPalaeogeography, Palaeoclimatology, Palaeoecology
Volume532
DOIs
StatePublished - Oct 15 2019

Fingerprint

chronostratigraphy
magnetostratigraphy
sequence stratigraphy
stratigraphy
eccentricity
glaciation
climate
accumulation rate
modeling
outcrop
calibration
sedimentary rocks
sediments
transgressive segregation
drilling
tectonics
precession
magnetic susceptibility
transgression
unconformity

Keywords

  • Chemeron Formation
  • Eccentricity
  • Paleoclimate
  • Paleolimnology
  • Pliocene
  • Precession

ASJC Scopus subject areas

  • Oceanography
  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes
  • Palaeontology

Cite this

Chronostratigraphy of the Baringo-Tugen-Barsemoi (HSPDP-BTB13-1A) core – 40Ar/39Ar dating, magnetostratigraphy, tephrostratigraphy, sequence stratigraphy and Bayesian age modeling. / Deino, A. L.; Sier, M. J.; Garello, D.; Keller, B.; Kingston, J.; Scott, J.; Dupont-Nivet, G.; Cohen, Andrew.

In: Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 532, 109258, 15.10.2019.

Research output: Contribution to journalArticle

@article{d0885755f4214615a5e1615c0303e4b2,
title = "Chronostratigraphy of the Baringo-Tugen-Barsemoi (HSPDP-BTB13-1A) core – 40Ar/39Ar dating, magnetostratigraphy, tephrostratigraphy, sequence stratigraphy and Bayesian age modeling",
abstract = "The Baringo-Tugen-Barsemoi 2013 drillcore (BTB13), acquired as part of the Hominin Sites and Paleolakes Drilling Project, recovered 228 m of fluviolacustrine sedimentary rocks and tuffs spanning a ~3.29–2.56 Ma interval of the highly fossiliferous and hominin-bearing Chemeron Formation, Tugen Hills, Kenya. Here we present a Bayesian stratigraphic age model for the core employing chronostratigraphic control points derived from 40Ar/39Ar dating of tuffs from core and outcrop, 40Ar/39Ar age calibration of related outcrop diatomaceous units, and core magnetostratigraphy. The age model reveals three main intervals with distinct sediment accumulation rates: an early rapid phase from 3.2 to 2.9 Ma; a relatively slow phase from 2.9 to 2.7 Ma; and the highest rate of accumulation from 2.7 to 2.6 Ma. The intervals of rapid accumulation correspond to periods of high Earth orbital eccentricity, whereas the slow accumulation interval corresponds to low eccentricity at 2.9–2.7 Ma, suggesting that astronomically mediated climate processes may be responsible for the observed changes in sediment accumulation rate. Lacustrine transgression-regression events, as delineated using sequence stratigraphy, dominantly operate on precession scale, particularly within the high eccentricity periods. A set of erosively based fluvial conglomerates correspond to the 2.9–2.7 Ma interval, which could be related to either the depositional response to low eccentricity or to the development of unconformities due to local tectonic activity. Age calibration of core magnetic susceptibility and gamma density logs indicates a close temporal correspondence between a shift from high- to low-frequency signal variability at ~3 Ma, approximately coincident the end of the mid-Piacenzian Warm Period, and the beginning of the cooling of world climate leading to the initiation of Northern Hemispheric glaciation c. 2.7 Ma. BTB13 and the Baringo Basin records may thus provide evidence of a connection between high-latitude glaciation and equatorial terrestrial climate toward the end of the Pliocene.",
keywords = "Chemeron Formation, Eccentricity, Paleoclimate, Paleolimnology, Pliocene, Precession",
author = "Deino, {A. L.} and Sier, {M. J.} and D. Garello and B. Keller and J. Kingston and J. Scott and G. Dupont-Nivet and Andrew Cohen",
year = "2019",
month = "10",
day = "15",
doi = "10.1016/j.palaeo.2019.109258",
language = "English (US)",
volume = "532",
journal = "Palaeogeography, Palaeoclimatology, Palaeoecology",
issn = "0031-0182",
publisher = "Elsevier",

}

TY - JOUR

T1 - Chronostratigraphy of the Baringo-Tugen-Barsemoi (HSPDP-BTB13-1A) core – 40Ar/39Ar dating, magnetostratigraphy, tephrostratigraphy, sequence stratigraphy and Bayesian age modeling

AU - Deino, A. L.

AU - Sier, M. J.

AU - Garello, D.

AU - Keller, B.

AU - Kingston, J.

AU - Scott, J.

AU - Dupont-Nivet, G.

AU - Cohen, Andrew

PY - 2019/10/15

Y1 - 2019/10/15

N2 - The Baringo-Tugen-Barsemoi 2013 drillcore (BTB13), acquired as part of the Hominin Sites and Paleolakes Drilling Project, recovered 228 m of fluviolacustrine sedimentary rocks and tuffs spanning a ~3.29–2.56 Ma interval of the highly fossiliferous and hominin-bearing Chemeron Formation, Tugen Hills, Kenya. Here we present a Bayesian stratigraphic age model for the core employing chronostratigraphic control points derived from 40Ar/39Ar dating of tuffs from core and outcrop, 40Ar/39Ar age calibration of related outcrop diatomaceous units, and core magnetostratigraphy. The age model reveals three main intervals with distinct sediment accumulation rates: an early rapid phase from 3.2 to 2.9 Ma; a relatively slow phase from 2.9 to 2.7 Ma; and the highest rate of accumulation from 2.7 to 2.6 Ma. The intervals of rapid accumulation correspond to periods of high Earth orbital eccentricity, whereas the slow accumulation interval corresponds to low eccentricity at 2.9–2.7 Ma, suggesting that astronomically mediated climate processes may be responsible for the observed changes in sediment accumulation rate. Lacustrine transgression-regression events, as delineated using sequence stratigraphy, dominantly operate on precession scale, particularly within the high eccentricity periods. A set of erosively based fluvial conglomerates correspond to the 2.9–2.7 Ma interval, which could be related to either the depositional response to low eccentricity or to the development of unconformities due to local tectonic activity. Age calibration of core magnetic susceptibility and gamma density logs indicates a close temporal correspondence between a shift from high- to low-frequency signal variability at ~3 Ma, approximately coincident the end of the mid-Piacenzian Warm Period, and the beginning of the cooling of world climate leading to the initiation of Northern Hemispheric glaciation c. 2.7 Ma. BTB13 and the Baringo Basin records may thus provide evidence of a connection between high-latitude glaciation and equatorial terrestrial climate toward the end of the Pliocene.

AB - The Baringo-Tugen-Barsemoi 2013 drillcore (BTB13), acquired as part of the Hominin Sites and Paleolakes Drilling Project, recovered 228 m of fluviolacustrine sedimentary rocks and tuffs spanning a ~3.29–2.56 Ma interval of the highly fossiliferous and hominin-bearing Chemeron Formation, Tugen Hills, Kenya. Here we present a Bayesian stratigraphic age model for the core employing chronostratigraphic control points derived from 40Ar/39Ar dating of tuffs from core and outcrop, 40Ar/39Ar age calibration of related outcrop diatomaceous units, and core magnetostratigraphy. The age model reveals three main intervals with distinct sediment accumulation rates: an early rapid phase from 3.2 to 2.9 Ma; a relatively slow phase from 2.9 to 2.7 Ma; and the highest rate of accumulation from 2.7 to 2.6 Ma. The intervals of rapid accumulation correspond to periods of high Earth orbital eccentricity, whereas the slow accumulation interval corresponds to low eccentricity at 2.9–2.7 Ma, suggesting that astronomically mediated climate processes may be responsible for the observed changes in sediment accumulation rate. Lacustrine transgression-regression events, as delineated using sequence stratigraphy, dominantly operate on precession scale, particularly within the high eccentricity periods. A set of erosively based fluvial conglomerates correspond to the 2.9–2.7 Ma interval, which could be related to either the depositional response to low eccentricity or to the development of unconformities due to local tectonic activity. Age calibration of core magnetic susceptibility and gamma density logs indicates a close temporal correspondence between a shift from high- to low-frequency signal variability at ~3 Ma, approximately coincident the end of the mid-Piacenzian Warm Period, and the beginning of the cooling of world climate leading to the initiation of Northern Hemispheric glaciation c. 2.7 Ma. BTB13 and the Baringo Basin records may thus provide evidence of a connection between high-latitude glaciation and equatorial terrestrial climate toward the end of the Pliocene.

KW - Chemeron Formation

KW - Eccentricity

KW - Paleoclimate

KW - Paleolimnology

KW - Pliocene

KW - Precession

UR - http://www.scopus.com/inward/record.url?scp=85069751249&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069751249&partnerID=8YFLogxK

U2 - 10.1016/j.palaeo.2019.109258

DO - 10.1016/j.palaeo.2019.109258

M3 - Article

AN - SCOPUS:85069751249

VL - 532

JO - Palaeogeography, Palaeoclimatology, Palaeoecology

JF - Palaeogeography, Palaeoclimatology, Palaeoecology

SN - 0031-0182

M1 - 109258

ER -