Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials

Rui Wang, Michelle K. Sing, Reginald K. Avery, Bruno S. Souza, Minkyu Kim, Bradley D. Olsen

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Polymer networks are widely used from commodity to biomedical materials. The space-spanning, net-like structure gives polymer networks their advantageous mechanical and dynamic properties, the most essential factor that governs their responses to external electrical, thermal, and chemical stimuli. Despite the ubiquity of applications and a century of active research on these materials, the way that chemistry and processing interact to yield the final structure and the material properties of polymer networks is not fully understood, which leads to a number of classical challenges in the physical chemistry of gels. Fundamentally, it is not yet possible to quantitatively predict the mechanical response of a polymer network based on its chemical design, limiting our ability to understand and characterize the nanostructure of gels and rationally design new materials. In this Account, we summarize our recent theoretical and experimental approaches to study the physical chemistry of polymer networks. First, our understanding of the impact of molecular defects on topology and elasticity of polymer networks is discussed. By systematically incorporating the effects of different orders of loop structure, we develop a kinetic graph theory and real elastic network theory that bridge the chemical design, the network topology, and the mechanical properties of the gel. These theories show good agreement with the recent experimental data without any fitting parameters. Next, associative polymer gel dynamics is discussed, focusing on our evolving understanding of the effect of transient bonds on the mechanical response. Using forced Rayleigh scattering (FRS), we are able to probe diffusivity across a wide range of length and time scales in gels. A superdiffusive region is observed in different associative network systems, which can be captured by a two-state kinetic model. Further, the effects of the architecture and chemistry of polymer chains on gel nanostructure are studied. By incorporating shear-thinning coiled-coil protein motifs into the midblock of a micelle-forming block copolymer, we are able to responsively adjust the gel toughness through controlling the nanostructure. Finally, we review the development of novel application-oriented materials that emerge from our enhanced understanding of gel physical chemistry, including injectable gel hemostats designed to treat internal wounds and engineered nucleoporin-like polypeptide (NLP) hydrogels that act as biologically selective filters. We believe that the fundamental physical chemistry questions articulated in this Account will provide inspiration to fully understand the design of polymer networks, a group of mysterious yet critically important materials.

Original languageEnglish (US)
Pages (from-to)2786-2795
Number of pages10
JournalAccounts of Chemical Research
Volume49
Issue number12
DOIs
StatePublished - Dec 20 2016

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint Dive into the research topics of 'Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials'. Together they form a unique fingerprint.

Cite this