Abstract
We use the Wide Field Camera 3 on the Hubble Space Telescope to spectrophotometrically monitor the young L7.5 companion HD 203030B. Our time series reveal photometric variability at 1.27 and 1.39 μm on timescales compatible with rotation. We find a rotation period of 7.5-0.5 +0.6 hr: Comparable to those observed in other brown dwarfs and planetary-mass companions younger than 300 Myr. We measure variability amplitudes of 1.1% ± 0.3% (1.27 μm) and 1.7% ± 0.4% (1.39 μm), and a phase lag of 56° ± 28° between the two light curves. We attribute the difference in photometric amplitudes and phases to a patchy cloud layer that is sinking below the level where water vapor becomes opaque. HD 203030B and the few other known variable young late-L dwarfs are unlike warmer (earlier-type and/or older) L dwarfs, for which variability is much less wavelength-dependent across the 1.1-1.7 μm region. We further suggest that a sinking of the top-most cloud deck below the level where water or carbon monoxide gas become opaque may also explain the often enhanced variability amplitudes of even earlier-type low-gravity L dwarfs. Because these condensate and gas opacity levels are already well-differentiated in T dwarfs, we do not expect the same variability amplitude enhancement in young versus old T dwarfs.
Original language | English (US) |
---|---|
Article number | 181 |
Journal | Astrophysical Journal |
Volume | 883 |
Issue number | 2 |
DOIs | |
State | Published - Oct 1 2019 |
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Access to Document
Other files and links
Fingerprint Dive into the research topics of 'Cloud Atlas: Variability in and out of the Water Band in the Planetary-mass HD 203030B Points to Cloud Sedimentation in Low-gravity L Dwarfs'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Cloud Atlas : Variability in and out of the Water Band in the Planetary-mass HD 203030B Points to Cloud Sedimentation in Low-gravity L Dwarfs. / Miles-Paéz, Paulo A.; Metchev, Stanimir; Apai, Dániel; Zhou, Yifan; Manjavacas, Elena; Karalidi, Theodora; Lew, Ben W.P.; Burgasser, Adam J.; Bedin, Luigi R.; Cowan, Nicolas; Lowrance, Patrick J.; Marley, Mark S.; Radigan, Jacqueline; Schneider, Glenn.
In: Astrophysical Journal, Vol. 883, No. 2, 181, 01.10.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Cloud Atlas
T2 - Variability in and out of the Water Band in the Planetary-mass HD 203030B Points to Cloud Sedimentation in Low-gravity L Dwarfs
AU - Miles-Paéz, Paulo A.
AU - Metchev, Stanimir
AU - Apai, Dániel
AU - Zhou, Yifan
AU - Manjavacas, Elena
AU - Karalidi, Theodora
AU - Lew, Ben W.P.
AU - Burgasser, Adam J.
AU - Bedin, Luigi R.
AU - Cowan, Nicolas
AU - Lowrance, Patrick J.
AU - Marley, Mark S.
AU - Radigan, Jacqueline
AU - Schneider, Glenn
N1 - Funding Information: Paulo A. Miles-P�ez Stanimir Metchev D�niel Apai Yifan Zhou Elena Manjavacas Theodora Karalidi Ben W. P. Lew Adam J. Burgasser Luigi R. Bedin Nicolas Cowan Patrick J. Lowrance Mark S. Marley Jacqueline Radigan Glenn Schneider Paulo A. Miles-P�ez Stanimir Metchev D�niel Apai Yifan Zhou Elena Manjavacas Theodora Karalidi Ben W. P. Lew Adam J. Burgasser Luigi R. Bedin Nicolas Cowan Patrick J. Lowrance Mark S. Marley Jacqueline Radigan Glenn Schneider Department of Physics & Astronomy and Centre for Planetary Science and Exploration, The University of Western Ontario, London, ON N6A 3K7, Canada Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718, USA Earths in Other Solar Systems Team, NASA Nexus for Exoplanet System Science, USA W.M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI 96743, USA Planetary Sciences Group, Department of Physics, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093, USA INAF Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova, Italy Department of Earth & Planetary Sciences and Department of Physics, McGill University, 3550 Rue University, Montr�al, QC H3A 0E8, Canada IPAC-Spitzer, MC 314-6, California Institute of Technology, Pasadena, CA 91125, USA NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035, USA Utah Valley University, 800 West University Parkway, Orem, UT 84058, USA Paulo A. Miles-P�ez, Stanimir Metchev, D�niel Apai, Yifan Zhou, Elena Manjavacas, Theodora Karalidi, Ben W. P. Lew, Adam J. Burgasser, Luigi R. Bedin, Nicolas Cowan, Patrick J. Lowrance, Mark S. Marley, Jacqueline Radigan and Glenn Schneider 2019-10-01 2019-10-03 13:46:40 cgi/release: Article released bin/incoming: New from .zip NASA NAS 5-26555 Natural Sciences and Engineering Research Council of Canada RGPIN-04396-2014 yes We use the Wide Field Camera 3 on the Hubble Space Telescope to spectrophotometrically monitor the young L7.5 companion HD�203030B. Our time series reveal photometric variability at 1.27 and 1.39 μ m on timescales compatible with rotation. We find a rotation period of hr: comparable to those observed in other brown dwarfs and planetary-mass companions younger than 300 Myr. We measure variability amplitudes of 1.1%���0.3% (1.27 μ m) and 1.7%���0.4% (1.39 μ m), and a phase lag of 56����28� between the two light curves. We attribute the difference in photometric amplitudes and phases to a patchy cloud layer that is sinking below the level where water vapor becomes opaque. HD 203030B and the few other known variable young late-L dwarfs are unlike warmer (earlier-type and/or older) L dwarfs, for which variability is much less wavelength-dependent across the 1.1–1.7 μ m region. We further suggest that a sinking of the top-most cloud deck below the level where water or carbon monoxide gas become opaque may also explain the often enhanced variability amplitudes of even earlier-type low-gravity L dwarfs. Because these condensate and gas opacity levels are already well-differentiated in T dwarfs, we do not expect the same variability amplitude enhancement in young versus old T dwarfs. � 2019. The American Astronomical Society. All rights reserved. Ackerman A. S. and Marley M. S. 2001 ApJ 556 872 10.1086/321540 Ackerman A. S. and Marley M. S. ApJ 0004-637X 556 2 872 2001 872 Allard F., Hauschildt P. H., Alexander D. R., Tamanai A. and Schweitzer A. 2001 ApJ 556 357 10.1086/321547 Allard F., Hauschildt P. H., Alexander D. R., Tamanai A. and Schweitzer A. ApJ 0004-637X 556 1 357 2001 357 Apai D., Karalidi T., Marley M. S. et al 2017 Sci 357 683 10.1126/science.aam9848 Apai D., Karalidi T., Marley M. S. et al Sci 357 2017 683 Apai D., Kasper M., Skemer A. et al 2016 ApJ 820 40 10.3847/0004-637X/820/1/40 Apai D., Kasper M., Skemer A. et al ApJ 0004-637X 820 1 40 2016 40 Apai D., Radigan J., Buenzli E. et al 2013 ApJ 768 121 10.1088/0004-637X/768/2/121 Apai D., Radigan J., Buenzli E. et al ApJ 0004-637X 768 2 121 2013 121 Artigau É, Bouchard S., Doyon R. and Lafrenière D. 2009 ApJ 701 1534 10.1088/0004-637X/701/2/1534 Artigau É, Bouchard S., Doyon R. and Lafrenière D. ApJ 0004-637X 701 2 1534 2009 1534 Baraffe I., Homeier D., Allard F. and Chabrier G. 2015 A&A 577 A42 10.1051/0004-6361/201425481 Baraffe I., Homeier D., Allard F. and Chabrier G. A&A 0004-6361 577 2015 A42 Barenfeld S. A., Bubar E. J., Mamajek E. E. and Young P. A. 2013 ApJ 766 6 10.1088/0004-637X/766/1/6 Barenfeld S. A., Bubar E. J., Mamajek E. E. and Young P. A. ApJ 0004-637X 766 1 6 2013 6 Barman T. S., Macintosh B., Konopacky Q. M. and Marois C. 2011a ApJ 733 65 10.1088/0004-637X/733/1/65 Barman T. S., Macintosh B., Konopacky Q. M. and Marois C. ApJ 0004-637X 733 1 65 2011 65 Barman T. S., Macintosh B., Konopacky Q. M. and Marois C. 2011b ApJL 735 L39 10.1088/2041-8205/735/2/L39 Barman T. S., Macintosh B., Konopacky Q. M. and Marois C. ApJL 0004-637X 735 2011 L39 Berta Z. K., Charbonneau D., Désert J.-M. et al 2012 ApJ 747 35 10.1088/0004-637X/747/1/35 Berta Z. K., Charbonneau D., Désert J.-M. et al ApJ 0004-637X 747 1 35 2012 35 Biller B. A., Vos J., Buenzli E. et al 2018 AJ 155 95 10.3847/1538-3881/aaa5a6 Biller B. A., Vos J., Buenzli E. et al AJ 1538-3881 155 2 95 2018 95 Bowler B. P., Liu M. C., Shkolnik E. L. and Dupuy T. J. 2013 ApJ 774 55 10.1088/0004-637X/774/1/55 Bowler B. P., Liu M. C., Shkolnik E. L. and Dupuy T. J. ApJ 0004-637X 774 1 55 2013 55 Buenzli E., Apai D., Radigan J., Reid I. N. and Flateau D. 2014 ApJ 782 77 10.1088/0004-637X/782/2/77 Buenzli E., Apai D., Radigan J., Reid I. N. and Flateau D. ApJ 0004-637X 782 2 77 2014 77 Buenzli E., Saumon D., Marley M. S. et al 2015 ApJ 798 127 10.1088/0004-637X/798/2/127 Buenzli E., Saumon D., Marley M. S. et al ApJ 0004-637X 798 2 127 2015 127 Burrows A., Hubbard W. B., Lunine J. I. and Liebert J. 2001 RvMP 73 719 10.1103/RevModPhys.73.719 Burrows A., Hubbard W. B., Lunine J. I. and Liebert J. RvMP 73 2001 719 Chauvin G., Lagrange A.-M., Dumas C. et al 2004 A&A 425 L29 10.1051/0004-6361:200400056 Chauvin G., Lagrange A.-M., Dumas C. et al A&A 0004-6361 425 2004 L29 Chauvin G., Lagrange A.-M., Zuckerman B. et al 2005 A&A 438 L29 10.1051/0004-6361:200500111 Chauvin G., Lagrange A.-M., Zuckerman B. et al A&A 0004-6361 438 2005 L29 Dupuy T. J., Liu M. C. and Ireland M. J. 2009 ApJ 699 168 10.1088/0004-637X/699/1/168 Dupuy T. J., Liu M. C. and Ireland M. J. ApJ 0004-637X 699 1 168 2009 168 Faherty J. K., Riedel A. R., Cruz K. L. et al 2016 ApJS 225 10 10.3847/0067-0049/225/1/10 Faherty J. K., Riedel A. R., Cruz K. L. et al ApJS 0067-0049 225 1 10 2016 10 Foreman-Mackey D. 2016 JOSS 1 24 10.21105/joss.00024 Foreman-Mackey D. JOSS 1529-1227 1 2016 24 Gaia Collaboration, Prusti T., de Bruijne J. H. J. et al 2016 A&A 595 A1 10.1051/0004-6361/201629272 Gaia Collaboration, Prusti T., de Bruijne J. H. J. et al A&A 0004-6361 595 2016 A1 Gizis J. E., Dettman K. G., Burgasser A. J. et al 2015 ApJ 813 104 10.1088/0004-637X/813/2/104 Gizis J. E., Dettman K. G., Burgasser A. J. et al ApJ 0004-637X 813 2 104 2015 104 Gizis J. E., Faherty J. K., Liu M. C. et al 2012 AJ 144 94 10.1088/0004-6256/144/4/94 Gizis J. E., Faherty J. K., Liu M. C. et al AJ 1538-3881 144 4 94 2012 94 Gregory P. C. 2005 Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with “Mathematica” Support (Cambridge: Cambridge Univ. Press) 10.1017/CBO9780511791277 Gregory P. C. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with “Mathematica” Support 2005 Kümmel M., Walsh J. R., Pirzkal N., Kuntschner H. and Pasquali A. 2009 PASP 121 59 10.1086/596715 Kümmel M., Walsh J. R., Pirzkal N., Kuntschner H. and Pasquali A. PASP 1538-3873 121 875 59 2009 59 Lew B. W. P., Apai D., Zhou Y. et al 2016 ApJL 829 L32 10.3847/2041-8205/829/2/L32 Lew B. W. P., Apai D., Zhou Y. et al ApJL 0004-637X 829 2016 L32 Liu M. C., Dupuy T. J. and Allers K. N. 2016 ApJ 833 96 10.3847/1538-4357/833/1/96 Liu M. C., Dupuy T. J. and Allers K. N. ApJ 0004-637X 833 1 96 2016 96 Liu M. C., Magnier E. A., Deacon N. R. et al 2013 ApJL 777 L20 10.1088/2041-8205/777/2/L20 Liu M. C., Magnier E. A., Deacon N. R. et al ApJL 0004-637X 777 2013 L20 Lodders K. and Fegley B. Jr. 2006 Astrophysics Update 2 ed J. W. Mason (Berlin: Springer) 1 Lodders K. and Fegley B.Jr. ed Mason J. W. Astrophysics Update 2 2006 1 Lomb N. R. 1976 Ap&SS 39 447 10.1007/BF00648343 Lomb N. R. Ap&SS 0004-640X 39 1976 447 Luhman K. L., Patten B. M., Marengo M. et al 2007 ApJ 654 570 10.1086/509073 Luhman K. L., Patten B. M., Marengo M. et al ApJ 0004-637X 654 1 570 2007 570 MacKenty J. W., Kimble R. A., O’Connell R. W. and Townsend J. A. 2010 Proc. SPIE 7731 77310Z 10.1117/12.857533 MacKenty J. W., Kimble R. A., O’Connell R. W. and Townsend J. A. Proc. SPIE 7731 77310Z 2010 Mamajek E. E. and Bell C. P. M. 2014 MNRAS 445 2169 10.1093/mnras/stu1894 Mamajek E. E. and Bell C. P. M. MNRAS 0035-8711 445 2014 2169 Manjavacas E., Apai D., Lew B. W. P. et al 2019 ApJL 875 L15 10.3847/2041-8213/ab13b9 Manjavacas E., Apai D., Lew B. W. P. et al ApJL 0004-637X 875 2019 L15 Manjavacas E., Apai D., Zhou Y. et al 2018 AJ 155 11 10.3847/1538-3881/aa984f Manjavacas E., Apai D., Zhou Y. et al AJ 1538-3881 155 1 11 2018 11 Marley M. S., Saumon D., Cushing M. et al 2012 ApJ 754 135 10.1088/0004-637X/754/2/135 Marley M. S., Saumon D., Cushing M. et al ApJ 0004-637X 754 2 135 2012 135 Metchev S. A., Heinze A., Apai D. et al 2015 ApJ 799 154 10.1088/0004-637X/799/2/154 Metchev S. A., Heinze A., Apai D. et al ApJ 0004-637X 799 2 154 2015 154 Metchev S. A. and Hillenbrand L. A. 2006 ApJ 651 1166 10.1086/507836 Metchev S. A. and Hillenbrand L. A. ApJ 0004-637X 651 2 1166 2006 1166 Miles-Páez P. A., Metchev S., Luhman K. L., Marengo M. and Hulsebus A. 2017 AJ 154 262 10.3847/1538-3881/aa9711 Miles-Páez P. A., Metchev S., Luhman K. L., Marengo M. and Hulsebus A. AJ 1538-3881 154 6 262 2017 262 Radigan J., Lafrenière D., Jayawardhana R. and Artigau E. 2014 ApJ 793 75 10.1088/0004-637X/793/2/75 Radigan J., Lafrenière D., Jayawardhana R. and Artigau E. ApJ 0004-637X 793 2 75 2014 75 Reid I. N., Gizis J. E. and Hawley S. L. 2002 AJ 124 2721 10.1086/343777 Reid I. N., Gizis J. E. and Hawley S. L. AJ 1538-3881 124 5 2721 2002 2721 Robinson T. D. and Marley M. S. 2014 ApJ 785 158 10.1088/0004-637X/785/2/158 Robinson T. D. and Marley M. S. ApJ 0004-637X 785 2 158 2014 158 Saumon D. and Marley M. S. 2008 ApJ 689 1327 10.1086/592734 Saumon D. and Marley M. S. ApJ 0004-637X 689 2 1327 2008 1327 Scargle J. D. 1982 ApJ 263 835 10.1086/160554 Scargle J. D. ApJ 263 1982 835 Schneider A. C., Hardegree-Ullman K. K., Cushing M. C., Kirkpatrick J. D. and Shkolnik E. L. 2018 AJ 155 238 10.3847/1538-3881/aabfc2 Schneider A. C., Hardegree-Ullman K. K., Cushing M. C., Kirkpatrick J. D. and Shkolnik E. L. AJ 1538-3881 155 6 238 2018 238 Scholz A., Kostov V., Jayawardhana R. and Mužić K. 2015 ApJL 809 L29 10.1088/2041-8205/809/2/L29 Scholz A., Kostov V., Jayawardhana R. and Mužić K. ApJL 0004-637X 809 2015 L29 Tody D. 1986 Proc. SPIE 627 733 10.1117/12.968154 Tody D. Proc. SPIE 627 1986 733 Tody D. 1993 ASP Conf. Ser. 52, Astronomical Data Analysis Software and Systems II ed R. J. Hanisch, R. J. V. Brissenden and J. Barnes (San Francisco, CA: ASP) 173 Tody D. ed Hanisch R. J., Brissenden R. J. V. and Barnes J. ASP Conf. Ser. 52, Astronomical Data Analysis Software and Systems II 1993 173 Tsuji T., Ohnaka K., Aoki W. and Nakajima T. 1996 A&A 308 L29 Tsuji T., Ohnaka K., Aoki W. and Nakajima T. A&A 0004-6361 308 1996 L29 Vos J. M., Allers K. N., Biller B. A. et al 2018 MNRAS 474 1041 10.1093/mnras/stx2752 Vos J. M., Allers K. N., Biller B. A. et al MNRAS 0035-8711 474 2018 1041 Yang H., Apai D., Marley M. S. et al 2015 ApJL 798 L13 10.1088/2041-8205/798/1/L13 Yang H., Apai D., Marley M. S. et al ApJL 0004-637X 798 2015 L13 Yang H., Apai D., Marley M. S. et al 2016 ApJ 826 8 10.3847/0004-637X/826/1/8 Yang H., Apai D., Marley M. S. et al ApJ 0004-637X 826 1 8 2016 8 Zhou Y., Apai D., Lew B. W. P. et al 2019 AJ 157 128 10.3847/1538-3881/ab037f Zhou Y., Apai D., Lew B. W. P. et al AJ 1538-3881 157 3 128 2019 128 Zhou Y., Apai D., Lew B. W. P. and Schneider G. 2017 AJ 153 243 10.3847/1538-3881/aa6481 Zhou Y., Apai D., Lew B. W. P. and Schneider G. AJ 1538-3881 153 6 243 2017 243 Zhou Y., Apai D., Metchev S. et al 2018 AJ 155 132 10.3847/1538-3881/aaabbd Zhou Y., Apai D., Metchev S. et al AJ 1538-3881 155 3 132 2018 132 Zhou Y., Apai D., Schneider G. H., Marley M. S. and Showman A. P. 2016 ApJ 818 176 10.3847/0004-637X/818/2/176 Zhou Y., Apai D., Schneider G. H., Marley M. S. and Showman A. P. ApJ 0004-637X 818 2 176 2016 176 Publisher Copyright: © 2019 The American Astronomical Society. All rights reserved.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - We use the Wide Field Camera 3 on the Hubble Space Telescope to spectrophotometrically monitor the young L7.5 companion HD 203030B. Our time series reveal photometric variability at 1.27 and 1.39 μm on timescales compatible with rotation. We find a rotation period of 7.5-0.5 +0.6 hr: Comparable to those observed in other brown dwarfs and planetary-mass companions younger than 300 Myr. We measure variability amplitudes of 1.1% ± 0.3% (1.27 μm) and 1.7% ± 0.4% (1.39 μm), and a phase lag of 56° ± 28° between the two light curves. We attribute the difference in photometric amplitudes and phases to a patchy cloud layer that is sinking below the level where water vapor becomes opaque. HD 203030B and the few other known variable young late-L dwarfs are unlike warmer (earlier-type and/or older) L dwarfs, for which variability is much less wavelength-dependent across the 1.1-1.7 μm region. We further suggest that a sinking of the top-most cloud deck below the level where water or carbon monoxide gas become opaque may also explain the often enhanced variability amplitudes of even earlier-type low-gravity L dwarfs. Because these condensate and gas opacity levels are already well-differentiated in T dwarfs, we do not expect the same variability amplitude enhancement in young versus old T dwarfs.
AB - We use the Wide Field Camera 3 on the Hubble Space Telescope to spectrophotometrically monitor the young L7.5 companion HD 203030B. Our time series reveal photometric variability at 1.27 and 1.39 μm on timescales compatible with rotation. We find a rotation period of 7.5-0.5 +0.6 hr: Comparable to those observed in other brown dwarfs and planetary-mass companions younger than 300 Myr. We measure variability amplitudes of 1.1% ± 0.3% (1.27 μm) and 1.7% ± 0.4% (1.39 μm), and a phase lag of 56° ± 28° between the two light curves. We attribute the difference in photometric amplitudes and phases to a patchy cloud layer that is sinking below the level where water vapor becomes opaque. HD 203030B and the few other known variable young late-L dwarfs are unlike warmer (earlier-type and/or older) L dwarfs, for which variability is much less wavelength-dependent across the 1.1-1.7 μm region. We further suggest that a sinking of the top-most cloud deck below the level where water or carbon monoxide gas become opaque may also explain the often enhanced variability amplitudes of even earlier-type low-gravity L dwarfs. Because these condensate and gas opacity levels are already well-differentiated in T dwarfs, we do not expect the same variability amplitude enhancement in young versus old T dwarfs.
UR - http://www.scopus.com/inward/record.url?scp=85073755510&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073755510&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab3d25
DO - 10.3847/1538-4357/ab3d25
M3 - Article
AN - SCOPUS:85073755510
VL - 883
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0004-637X
IS - 2
M1 - 181
ER -