Cluster organization and response characteristics of the giant fiber pathway of the blowfly Calliphora erythrocephala

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

Intersegmental descending neurons (DNs) link the insect brain to the thoracic ganglia. Iontophoresis of cobalt or fluorescent dyes reveals DNs as uniquely identifiable elements, the dendrites of which are situated within a characteristic region of the lateral deutocerebrum. Here we demonstrate that DNs occur as discrete groups of elements termed DN clusters (DNCs). A DNC is a characteristic combination of neurons that arises from a multiglomerular complex in which the main components of each glomerulus are a characteristic ensemble of sensory afferents. Other neurons involved in the complex are local interneurons, heterolateral interneurons that connect DNCs on both sides of the brain, and neurons originating in higher centers of the brain. We describe the structure, relationships, and projections of eight DNs that contribute to a descending neuron cluster located ventrally in the lateral deutocerebrum, an area interposed between the ventral antennal lobes and the laterally disposed optic lobes. We have named this cluster the GDNC because its most prominent member is the giant descending neuron (GDN), which plays a cardinal role in the midleg 'jump' response and which is implicated in the initiation of flight. The GDN and its companion neurons receive primary mechanosensory afferents from the antennae, terminals of wide- and small-field retinotopic neurons originating in the lobula, and endings derived from sensory interneurons that originate in leg neuropil of the thoracic ganglia. We demonstrate that DNs of this cluster share morphological and functional properties. They have similar axon trajectories into the thoracic ganglia, where they invade functionally related neuropils. Neurons of the GDNC respond to identical stimulus paradigms and share similar electrophysiological characteristics. Neither the GDN nor other members of its cluster show spontaneous activity. These neurons are reluctant to respond to unimodal stimuli, but respond to specific combinations of visual and mechanosensory stimulation. These results suggest that in flies groups of morphologically similar DNs responding to context-specific environmental cues may cooperate in motor control.

Original languageEnglish (US)
Pages (from-to)59-75
Number of pages17
JournalJournal of Comparative Neurology
Volume294
Issue number1
StatePublished - 1990

Fingerprint

Neurons
Interneurons
Ganglia
Neuropil
Thorax
Brain
Iontophoresis
Photic Stimulation
Dendrites
Cobalt
Fluorescent Dyes
Diptera
Cues
Axons
Insects
Leg

Keywords

  • blowfly
  • brain organization
  • descending neurons
  • multimodal integration

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{2bd24501f9b4441dbcaf279d319ffa15,
title = "Cluster organization and response characteristics of the giant fiber pathway of the blowfly Calliphora erythrocephala",
abstract = "Intersegmental descending neurons (DNs) link the insect brain to the thoracic ganglia. Iontophoresis of cobalt or fluorescent dyes reveals DNs as uniquely identifiable elements, the dendrites of which are situated within a characteristic region of the lateral deutocerebrum. Here we demonstrate that DNs occur as discrete groups of elements termed DN clusters (DNCs). A DNC is a characteristic combination of neurons that arises from a multiglomerular complex in which the main components of each glomerulus are a characteristic ensemble of sensory afferents. Other neurons involved in the complex are local interneurons, heterolateral interneurons that connect DNCs on both sides of the brain, and neurons originating in higher centers of the brain. We describe the structure, relationships, and projections of eight DNs that contribute to a descending neuron cluster located ventrally in the lateral deutocerebrum, an area interposed between the ventral antennal lobes and the laterally disposed optic lobes. We have named this cluster the GDNC because its most prominent member is the giant descending neuron (GDN), which plays a cardinal role in the midleg 'jump' response and which is implicated in the initiation of flight. The GDN and its companion neurons receive primary mechanosensory afferents from the antennae, terminals of wide- and small-field retinotopic neurons originating in the lobula, and endings derived from sensory interneurons that originate in leg neuropil of the thoracic ganglia. We demonstrate that DNs of this cluster share morphological and functional properties. They have similar axon trajectories into the thoracic ganglia, where they invade functionally related neuropils. Neurons of the GDNC respond to identical stimulus paradigms and share similar electrophysiological characteristics. Neither the GDN nor other members of its cluster show spontaneous activity. These neurons are reluctant to respond to unimodal stimuli, but respond to specific combinations of visual and mechanosensory stimulation. These results suggest that in flies groups of morphologically similar DNs responding to context-specific environmental cues may cooperate in motor control.",
keywords = "blowfly, brain organization, descending neurons, multimodal integration",
author = "Milde, {J. J.} and Strausfeld, {Nicholas J}",
year = "1990",
language = "English (US)",
volume = "294",
pages = "59--75",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Cluster organization and response characteristics of the giant fiber pathway of the blowfly Calliphora erythrocephala

AU - Milde, J. J.

AU - Strausfeld, Nicholas J

PY - 1990

Y1 - 1990

N2 - Intersegmental descending neurons (DNs) link the insect brain to the thoracic ganglia. Iontophoresis of cobalt or fluorescent dyes reveals DNs as uniquely identifiable elements, the dendrites of which are situated within a characteristic region of the lateral deutocerebrum. Here we demonstrate that DNs occur as discrete groups of elements termed DN clusters (DNCs). A DNC is a characteristic combination of neurons that arises from a multiglomerular complex in which the main components of each glomerulus are a characteristic ensemble of sensory afferents. Other neurons involved in the complex are local interneurons, heterolateral interneurons that connect DNCs on both sides of the brain, and neurons originating in higher centers of the brain. We describe the structure, relationships, and projections of eight DNs that contribute to a descending neuron cluster located ventrally in the lateral deutocerebrum, an area interposed between the ventral antennal lobes and the laterally disposed optic lobes. We have named this cluster the GDNC because its most prominent member is the giant descending neuron (GDN), which plays a cardinal role in the midleg 'jump' response and which is implicated in the initiation of flight. The GDN and its companion neurons receive primary mechanosensory afferents from the antennae, terminals of wide- and small-field retinotopic neurons originating in the lobula, and endings derived from sensory interneurons that originate in leg neuropil of the thoracic ganglia. We demonstrate that DNs of this cluster share morphological and functional properties. They have similar axon trajectories into the thoracic ganglia, where they invade functionally related neuropils. Neurons of the GDNC respond to identical stimulus paradigms and share similar electrophysiological characteristics. Neither the GDN nor other members of its cluster show spontaneous activity. These neurons are reluctant to respond to unimodal stimuli, but respond to specific combinations of visual and mechanosensory stimulation. These results suggest that in flies groups of morphologically similar DNs responding to context-specific environmental cues may cooperate in motor control.

AB - Intersegmental descending neurons (DNs) link the insect brain to the thoracic ganglia. Iontophoresis of cobalt or fluorescent dyes reveals DNs as uniquely identifiable elements, the dendrites of which are situated within a characteristic region of the lateral deutocerebrum. Here we demonstrate that DNs occur as discrete groups of elements termed DN clusters (DNCs). A DNC is a characteristic combination of neurons that arises from a multiglomerular complex in which the main components of each glomerulus are a characteristic ensemble of sensory afferents. Other neurons involved in the complex are local interneurons, heterolateral interneurons that connect DNCs on both sides of the brain, and neurons originating in higher centers of the brain. We describe the structure, relationships, and projections of eight DNs that contribute to a descending neuron cluster located ventrally in the lateral deutocerebrum, an area interposed between the ventral antennal lobes and the laterally disposed optic lobes. We have named this cluster the GDNC because its most prominent member is the giant descending neuron (GDN), which plays a cardinal role in the midleg 'jump' response and which is implicated in the initiation of flight. The GDN and its companion neurons receive primary mechanosensory afferents from the antennae, terminals of wide- and small-field retinotopic neurons originating in the lobula, and endings derived from sensory interneurons that originate in leg neuropil of the thoracic ganglia. We demonstrate that DNs of this cluster share morphological and functional properties. They have similar axon trajectories into the thoracic ganglia, where they invade functionally related neuropils. Neurons of the GDNC respond to identical stimulus paradigms and share similar electrophysiological characteristics. Neither the GDN nor other members of its cluster show spontaneous activity. These neurons are reluctant to respond to unimodal stimuli, but respond to specific combinations of visual and mechanosensory stimulation. These results suggest that in flies groups of morphologically similar DNs responding to context-specific environmental cues may cooperate in motor control.

KW - blowfly

KW - brain organization

KW - descending neurons

KW - multimodal integration

UR - http://www.scopus.com/inward/record.url?scp=0025218411&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025218411&partnerID=8YFLogxK

M3 - Article

VL - 294

SP - 59

EP - 75

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 1

ER -