Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere - Ocean general circulation models

Jianjun Yin, Ronald J. Stouffer

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Two coupled atmosphere-ocean general circulation models developed at GFDL show differing stability properties of the Atlantic thermohaline circulation (THC) in the Coupled Model Intercomparison Project/ Paleoclimate Modeling Intercomparison Project (CMIP/PMIP) coordinated "water-hosing" experiment. In contrast to the R30 model in which the "off" state of the THC is stable, it is unstable in the CM2.1. This discrepancy has also been found among other climate models. Here a comprehensive analysis is performed to investigate the causes for the differing behaviors of the THC. In agreement with previous work, it is found that the different stability of the THC is closely related to the simulation of a reversed thermohaline circulation (RTHC) and the atmospheric feedback. After the shutdown of the THC, the RTHC is well developed and stable in R30. It transports freshwater into the subtropical North Atlantic, preventing the recovery of the salinity and stabilizing the off mode of the THC. The flux adjustment is a large term in the water budget of the Atlantic Ocean. In contrast, the RTHC is weak and unstable in CM2.1. The atmospheric feedback associated with the southward shift of the Atlantic ITCZ is much more significant. The oceanic freshwater convergence into the subtropical North Atlantic cannot completely compensate for the evaporation, leading to the recovery of the THC in CM2.1. The rapid salinity recovery in the subtropical North Atlantic excites large-scale baroclinic eddies, which propagate northward into the Nordic seas and Irminger Sea. As the large-scale eddies reach the high latitudes of the North Atlantic, the oceanic deep convection restarts. The differences in the southward propagation of the salinity and temperature anomalies from the hosing perturbation region in R30 and CM2.1, and associated different development of a reversed meridional density gradient in the upper South Atlantic, are the cause of the differences in the behavior of the RTHC. The present study sheds light on important physical and dynamical processes in simulating the dynamical behavior of the THC.

Original languageEnglish (US)
Pages (from-to)4293-4315
Number of pages23
JournalJournal of Climate
Volume20
Issue number17
DOIs
StatePublished - Sep 1 2007
Externally publishedYes

Fingerprint

thermohaline circulation
general circulation model
atmosphere
ocean
salinity
comparison
eddy
intertropical convergence zone
paleoclimate
temperature anomaly
water budget
climate modeling
evaporation
convection
perturbation

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere - Ocean general circulation models. / Yin, Jianjun; Stouffer, Ronald J.

In: Journal of Climate, Vol. 20, No. 17, 01.09.2007, p. 4293-4315.

Research output: Contribution to journalArticle

@article{89a0402856c845379cfc49262a652160,
title = "Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere - Ocean general circulation models",
abstract = "Two coupled atmosphere-ocean general circulation models developed at GFDL show differing stability properties of the Atlantic thermohaline circulation (THC) in the Coupled Model Intercomparison Project/ Paleoclimate Modeling Intercomparison Project (CMIP/PMIP) coordinated {"}water-hosing{"} experiment. In contrast to the R30 model in which the {"}off{"} state of the THC is stable, it is unstable in the CM2.1. This discrepancy has also been found among other climate models. Here a comprehensive analysis is performed to investigate the causes for the differing behaviors of the THC. In agreement with previous work, it is found that the different stability of the THC is closely related to the simulation of a reversed thermohaline circulation (RTHC) and the atmospheric feedback. After the shutdown of the THC, the RTHC is well developed and stable in R30. It transports freshwater into the subtropical North Atlantic, preventing the recovery of the salinity and stabilizing the off mode of the THC. The flux adjustment is a large term in the water budget of the Atlantic Ocean. In contrast, the RTHC is weak and unstable in CM2.1. The atmospheric feedback associated with the southward shift of the Atlantic ITCZ is much more significant. The oceanic freshwater convergence into the subtropical North Atlantic cannot completely compensate for the evaporation, leading to the recovery of the THC in CM2.1. The rapid salinity recovery in the subtropical North Atlantic excites large-scale baroclinic eddies, which propagate northward into the Nordic seas and Irminger Sea. As the large-scale eddies reach the high latitudes of the North Atlantic, the oceanic deep convection restarts. The differences in the southward propagation of the salinity and temperature anomalies from the hosing perturbation region in R30 and CM2.1, and associated different development of a reversed meridional density gradient in the upper South Atlantic, are the cause of the differences in the behavior of the RTHC. The present study sheds light on important physical and dynamical processes in simulating the dynamical behavior of the THC.",
author = "Jianjun Yin and Stouffer, {Ronald J.}",
year = "2007",
month = "9",
day = "1",
doi = "10.1175/JCLI4256.1",
language = "English (US)",
volume = "20",
pages = "4293--4315",
journal = "Journal of Climate",
issn = "0894-8755",
publisher = "American Meteorological Society",
number = "17",

}

TY - JOUR

T1 - Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere - Ocean general circulation models

AU - Yin, Jianjun

AU - Stouffer, Ronald J.

PY - 2007/9/1

Y1 - 2007/9/1

N2 - Two coupled atmosphere-ocean general circulation models developed at GFDL show differing stability properties of the Atlantic thermohaline circulation (THC) in the Coupled Model Intercomparison Project/ Paleoclimate Modeling Intercomparison Project (CMIP/PMIP) coordinated "water-hosing" experiment. In contrast to the R30 model in which the "off" state of the THC is stable, it is unstable in the CM2.1. This discrepancy has also been found among other climate models. Here a comprehensive analysis is performed to investigate the causes for the differing behaviors of the THC. In agreement with previous work, it is found that the different stability of the THC is closely related to the simulation of a reversed thermohaline circulation (RTHC) and the atmospheric feedback. After the shutdown of the THC, the RTHC is well developed and stable in R30. It transports freshwater into the subtropical North Atlantic, preventing the recovery of the salinity and stabilizing the off mode of the THC. The flux adjustment is a large term in the water budget of the Atlantic Ocean. In contrast, the RTHC is weak and unstable in CM2.1. The atmospheric feedback associated with the southward shift of the Atlantic ITCZ is much more significant. The oceanic freshwater convergence into the subtropical North Atlantic cannot completely compensate for the evaporation, leading to the recovery of the THC in CM2.1. The rapid salinity recovery in the subtropical North Atlantic excites large-scale baroclinic eddies, which propagate northward into the Nordic seas and Irminger Sea. As the large-scale eddies reach the high latitudes of the North Atlantic, the oceanic deep convection restarts. The differences in the southward propagation of the salinity and temperature anomalies from the hosing perturbation region in R30 and CM2.1, and associated different development of a reversed meridional density gradient in the upper South Atlantic, are the cause of the differences in the behavior of the RTHC. The present study sheds light on important physical and dynamical processes in simulating the dynamical behavior of the THC.

AB - Two coupled atmosphere-ocean general circulation models developed at GFDL show differing stability properties of the Atlantic thermohaline circulation (THC) in the Coupled Model Intercomparison Project/ Paleoclimate Modeling Intercomparison Project (CMIP/PMIP) coordinated "water-hosing" experiment. In contrast to the R30 model in which the "off" state of the THC is stable, it is unstable in the CM2.1. This discrepancy has also been found among other climate models. Here a comprehensive analysis is performed to investigate the causes for the differing behaviors of the THC. In agreement with previous work, it is found that the different stability of the THC is closely related to the simulation of a reversed thermohaline circulation (RTHC) and the atmospheric feedback. After the shutdown of the THC, the RTHC is well developed and stable in R30. It transports freshwater into the subtropical North Atlantic, preventing the recovery of the salinity and stabilizing the off mode of the THC. The flux adjustment is a large term in the water budget of the Atlantic Ocean. In contrast, the RTHC is weak and unstable in CM2.1. The atmospheric feedback associated with the southward shift of the Atlantic ITCZ is much more significant. The oceanic freshwater convergence into the subtropical North Atlantic cannot completely compensate for the evaporation, leading to the recovery of the THC in CM2.1. The rapid salinity recovery in the subtropical North Atlantic excites large-scale baroclinic eddies, which propagate northward into the Nordic seas and Irminger Sea. As the large-scale eddies reach the high latitudes of the North Atlantic, the oceanic deep convection restarts. The differences in the southward propagation of the salinity and temperature anomalies from the hosing perturbation region in R30 and CM2.1, and associated different development of a reversed meridional density gradient in the upper South Atlantic, are the cause of the differences in the behavior of the RTHC. The present study sheds light on important physical and dynamical processes in simulating the dynamical behavior of the THC.

UR - http://www.scopus.com/inward/record.url?scp=34648831402&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34648831402&partnerID=8YFLogxK

U2 - 10.1175/JCLI4256.1

DO - 10.1175/JCLI4256.1

M3 - Article

AN - SCOPUS:34648831402

VL - 20

SP - 4293

EP - 4315

JO - Journal of Climate

JF - Journal of Climate

SN - 0894-8755

IS - 17

ER -