Complete integrability of the reduced Maxwell-Bloch equations with permanent dipole

Maria Agrotis, Nicholas M Ercolani, S. A. Glasgow, Jerome V Moloney

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

We obtain the Lax pair, hierarchy of commuting flows and Bäcklund transformations for a reduced Maxwell-Bloch (RMB) system. This system is of particular interest for the description of unipolar, nonoscillating electromagnetic solitons (also called "electromagnetic bubbles").

Original languageEnglish (US)
Pages (from-to)134-162
Number of pages29
JournalPhysica D: Nonlinear Phenomena
Volume138
Issue number1-2
StatePublished - Apr 1 2000

Fingerprint

Complete Integrability
Maxwell equations
Solitons
Dipole
electromagnetism
dipoles
Lax Pair
Bubble
hierarchies
bubbles
solitary waves
Hierarchy

Keywords

  • Bäcklund transformations
  • Hierarchy of commuting flows
  • Lax pair
  • Maxwell-Bloch equations

ASJC Scopus subject areas

  • Applied Mathematics
  • Statistical and Nonlinear Physics

Cite this

Complete integrability of the reduced Maxwell-Bloch equations with permanent dipole. / Agrotis, Maria; Ercolani, Nicholas M; Glasgow, S. A.; Moloney, Jerome V.

In: Physica D: Nonlinear Phenomena, Vol. 138, No. 1-2, 01.04.2000, p. 134-162.

Research output: Contribution to journalArticle

@article{d9641f95020f40febafa455632e00393,
title = "Complete integrability of the reduced Maxwell-Bloch equations with permanent dipole",
abstract = "We obtain the Lax pair, hierarchy of commuting flows and B{\"a}cklund transformations for a reduced Maxwell-Bloch (RMB) system. This system is of particular interest for the description of unipolar, nonoscillating electromagnetic solitons (also called {"}electromagnetic bubbles{"}).",
keywords = "B{\"a}cklund transformations, Hierarchy of commuting flows, Lax pair, Maxwell-Bloch equations",
author = "Maria Agrotis and Ercolani, {Nicholas M} and Glasgow, {S. A.} and Moloney, {Jerome V}",
year = "2000",
month = "4",
day = "1",
language = "English (US)",
volume = "138",
pages = "134--162",
journal = "Physica D: Nonlinear Phenomena",
issn = "0167-2789",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Complete integrability of the reduced Maxwell-Bloch equations with permanent dipole

AU - Agrotis, Maria

AU - Ercolani, Nicholas M

AU - Glasgow, S. A.

AU - Moloney, Jerome V

PY - 2000/4/1

Y1 - 2000/4/1

N2 - We obtain the Lax pair, hierarchy of commuting flows and Bäcklund transformations for a reduced Maxwell-Bloch (RMB) system. This system is of particular interest for the description of unipolar, nonoscillating electromagnetic solitons (also called "electromagnetic bubbles").

AB - We obtain the Lax pair, hierarchy of commuting flows and Bäcklund transformations for a reduced Maxwell-Bloch (RMB) system. This system is of particular interest for the description of unipolar, nonoscillating electromagnetic solitons (also called "electromagnetic bubbles").

KW - Bäcklund transformations

KW - Hierarchy of commuting flows

KW - Lax pair

KW - Maxwell-Bloch equations

UR - http://www.scopus.com/inward/record.url?scp=0346054934&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0346054934&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0346054934

VL - 138

SP - 134

EP - 162

JO - Physica D: Nonlinear Phenomena

JF - Physica D: Nonlinear Phenomena

SN - 0167-2789

IS - 1-2

ER -